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ABSTRACT

As an alternative to the LU matrix factorization, we consider a factoriza-
tion that uses the lower triangular part of the original matrix as one factor and
computes the other factors as a product of rank-one update matrices.

Under some non-singularity assumptions, an mXxm matrix A can be factorized
as EpE,;-1 ... E2A, where A; is the lower triangular part of A and E; is a rank-
one update matrix of the form I + viw; with v a column vector and wj a row
vector. The vector vy is the k** column of A— A,. If vy = 0, then E; = I may be
omitted from the factorization. Otherwise, the row vector wi must be computed.

After reviewing and improving the time complexity, the requirements, the
stability and the efficiency of this method, we derive a stable factorization algo-
rithm which we implement in FORTRAN77 within the framework of the simplex
algorithm for linear programming.

A comparison of our numerical results with those obtained through the code
MINOS 5.3 indicate that our method may be more efficient than an ordinary
LU decomposition for some matrices whose order ranges between 28 and 1481,

e

especially when these matrices are almost triangular. -
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INTRODUCTION

The most widely used matrix factorization, the LU factorization, amounts
to the computation of two triangular factors, one of which can be regarded as
a product of rank-one update matrices. As an alternative, George B. Dantzig
(1985) has proposed another factorization that uses the lower triangular part of
the original matrix as one factor and computes the other factor as a product of

rank-one update matrices.

Under some non-singularity assumptions, an mxm matrix A can be factorized
as Ep,E,-1... E2A; where A is the lower triangular part ~f A and Ey is a rank-
one update matrix of the form I + viwy with vi a column vector and wy a row

vector.

The vector vy is the k** column of A — A;. If vi = 0, then E; = I may be
omitted from the factorization. Otherwise, the row vector w; defining E; can be

obtained by solving wiE;_; ... E2A; = u{ where u{ is the k** unit row vector.

Once the auxiliary vectors w; have been computed, any system Ax = b or
A = 4 can be solved through one sparse triangular system involving A, and
s rank-one updates involving the matrices E; for which column k is a spike (i.e.
vi # 0).

However, that factorization may break down, for instance on a matrix whose
diagonal contains a zero element. In addition, even if the factorization exists, it
will often be unstable. In this thesis, we show how to overcome the problems of
existence and stability. We present a factorization method theoretically applicable
to any non-singular matrix. The numerical results presented in the last chapter
indicate that our method may be more efficient than an ordinary LU factorization
for sorne matrices whose order ranges from 28 to 1481, and whose number of

elements ranges from 72 to 6344.
In Chapter 1, we indicate how to compute the vectors w; recursively, and

how to solve systems such as Ax = b and mA = < using these vectors, assuming
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the non-singularity of A and of some of its subiatrices.

In Chapter 2, we streamline the method described in Chapter 1 and reduce
its computational complexity to the same level as that of the LU factorization.

In Chapter 3, we study the existence and the stability of the factorization.
We introduce the vectors o, (2 < k < m), a normalized form of the vectors
wi (2 £ k < m). f A is non-singular, a permutation Q of the columns of A
makes AQ and its leading principal submatrices non-singular and, in practice,
well conditioned. We indicate how to compute simultaneously the permutation Q
and the vectors o representing the factorization of AQ.

In Chapter 4, we present some algorithms inspired by Hellerinan and Rarick
(1971), that permute the rows and columns of A in order to reduce the number
of spikes (i.e. the columns that have nonzero entries above the diagonal). The
method is more efficient if there are fewer spikes and if the spikes are shifted
towards the left because w; has at most k nonzero components.

In Chapter 5, we propose an algorithm that reorders the rows and columns of
A while computing the vectors o, so as to reduce the number of spikes without
compremising the numerical stability of the factorization.

In Chapter 6, we describe a FORTRAN implementation of the algorithm
within the framework of linear programming. We use our own set of factorization
routines in the optimization code MINOS 5.3 of Murtagh and Saunders (1987) on
a set of 51 test problems from netlib (Gay, 1985). With the options chosen, our
method achieves faster running times than the original MINOS code on about a
third of the problems. Unfortunately, it also takes up to four times as long as

MINOS on some problems.
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CHAPTER 1. THE BASIC METHOD

1.1 Introduction

Under some non-singularity assumptions, an mXxm matrix A can be factorized
into E,,En—1...E2A, where A is the lower triangular part of A and E; is a
rank-one update mairix of the form I + v,w; with v; a column vector and w; a
row vector.

The vector vy is the k** column of A — A;. If vy = 0, then E;x = I may be
omitted from the factorization. Otherwise, the row vector w; must be computed.

In this Chapter, we describe the factorization and provide a natural method
to compute the vectors wi (2 < k < m) and to solve systems such as Ax = b or

7 A = v using this factorization.

1.2 Definitions and Notation

Let m be a positive integer. Let R denote the real numbers. Unless otherwise
specified, matrix denotes an element of R™*™ column vector denotes an element
of R™*! and row vector denotes an element of R1*™. Row vectors are usually
represented by Greek letters.

A given matrix A can be decomposed into its lower triangular part A; (in-
cluding the diagonal) and its strictly upper triangular part, which can in turn be
broken down according to its entries in columns 2,...,m into m — 1 matrices of

the form vku{ for 2 < k < m, where uy is the k** unit vector. Then

A=A + voul + vaul + .-+ + vpul.
For 2 <k <m,let
A
A=Ay + vku{
= A + Vzug' + -+ v,,u[.

If vi # 0, column k is called a spike of A.
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Example: The following 3 x 3 matrix A has two spikes, namely columns 2

and 3. We use th

>
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il

ymbol * to denote coefficients that are identically zero.

In this chapter, we assume that the matrices Ay (1 < k¥ < m) are non-

singular (cf. Chapter 3). We can then turn the above decomposition of A into a

factorization. For 2 < & < m, let

A T,-1

Ex 2 I + vy

Then

A = Ary + vpup

= (I + veulADL)) Ay
= (I + viws) Ag

= ExAp-;

= ExEx—1...E2A,

and in particular, A = ERLE,,_;... E2A;. Each matnix E; is a rank-one update

matrix.

Note that we could also have factored A, on the left and obtained a

factorization of the form A;F;...Fi_;F; where each matrix F; is also a rank-

one update matrix.




1.3 Solution of Rank-One Update Systems

Let E2T+vw and 621 + wv. The following Lemmas are well known

properties of rank-one update matrices (Golub & Van Loan, 1983).

Lemma 1.3.1

{ 0 =detE
El'=1- ¢ 'vw
Lemma 1.3.2 The solutions to the elementary linear systems Ex =b and

wE =+ are given by the following rank-one update formulas:

=1+ wv
x=b - §7' (wb) v

T= — 7 (yV)w

Once w and # have been computed, the number of multiplications or
divisions required in either update is at most equal to the number of nonzero
components in v, plus the number of nonzero components in w, plus one (corre-
sponding to the factor #~!). By construction, the vectors vy and w; defined in
Section 1.2 have at most k — 1 and k nonzero components respectively. Therefore,
solving the system Eix = b or wEi = <4 requires at most 2k multiplica-
tions or divisions. The same upper bound holds for the number of additions or

subtractions.

1.4 Computation of the Factors E; (2 <k <m)

For our purposes, knowing the factor Ei = I + viw; through .he vec-
tors v, and w; is sufficient. Since the vectors vi are given, we need only

compute the auxiliary vectors w; (2 < k < m) defined by wiAx_; = u;r, 1.e.

5
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WirEg—1...E;A, = uf. This can be done recursively by solving the systems

(
“"ZAI = u,

w:;EgAl T

il
=
w

T wkEk..l...EzAl = u{

L mem—lEm—2 A EzAl = u;I;,

in that order. To solve the system wiE;_;...E;A; = uz, we can solve the
triangular system 7;A; = ul by backward substitution and then successively
solve k — 2 rank-one update systems of the form w/E; =m;_; for 2<I<k-1.

By Lemma 1.3.2, these systems are equivalent to
w o= w_y— 67 (wi_yvi) wi for 2<1<k-1.
Once wi = k-, is known, we can obtain 6; by
O = 1 4+ wivk.

Since the last m — k£ components of 7, and its successive rank-one updates
(including wg) are zero, all these systems are of dimension at most k for practical
purposes. The maximum number of multiplications required to compute (wy,6)

by this method is

k-1 3

FR(k+1) + Y 28 + k-1 = §k2+k
=2

and the maximum number of multiplications required to factorize A is

m
Y (3K +k) = im® +m?
k=2
Example:
8 1 6
Consider the 3 x 3 matrix A= {3 5 7 | introduced in Section 1.2.
4 9 2
6




The vector w, characterizing E; is given by w;A; = ul.

o

(]

|

—

+

~~

|

8l

[ 115

*

o
N
*  H
v

I

-h'w

(=1 ]

The vector w3 characterizing E;3 is given by w3;E A, = u{.

8 * =
QJ3E2 3 5 = = (0 0 1)
4 9 2

1.5 Solution of Ax=Db
To solve the system Ax = b given the non-singular factorization A =

E. ... E2A,, the natural method is to solve successively the systems

( Embm-l = bm

Eibi_; =b;

1

E,b; = b,

Alx = bl
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for bm-i,...,b; and x, having let b, 2 b Applying Lemma 1.3.2 to the
non-singular matrices Eix (m > k > 2) , we can solve the first m — 1 systems

according to the rank-one update formulas
bi_; = by — 9;1 (wibg) vi for m>2k>2

and then solve the triangular system A;x = b; by forward substitution.

The maximum number of multiplications required by this method is

2
Y 2% + im(m+1) & Im?+im.

k=m

Example:

8 1 6
Consider the 3 x 3 system Ax =bwhere A= |3 5 7] and b=
4 9 2
24
14 ). The system can be written E3jE,A;x = b. The vectors by, by, b, and
-8
x are the following:

24
14
-8
24 24 6 6
-8 -8 * -8

b;

b,




1.6 Solution of TA =+
To solve the system wA = 4 given the non-singular factorization A =
E.....E2A,, the natural method is to solve successively the systems
[ mA =9
7|'2E2 =Ty

J

By = i

| ®mEm = Ty

for m,,m,...,®y = ™. The triangular system Ay = 9 can be solved by
backward substitution. Then, applying Lemma 1.3.2 to the non-singular matrices

E; , we can solve the last m —1 systems according to the rank-one update formulas
T = Mgy — 0;1 (Tk-1Vk) Wi for 2<k<m.
The maximum number of multiplications required by this method is

%m(m-{-l) + ZZk ~ %m2 + %m.
k=2

Example:

8 1 6
Consider the 3 x 3 system wA = 4 where A = |3 5 7) and v =
4 9 2

(6 0 —6). The system can be written TE3E;A; = 4. The vectors m,, m;, 7;

and 7 are the following:




E)
»
I
~~
Blo
3
|
W
e
|
SI8
——
Blo
ol
|
(%)
N
S
* ¥
N —
—
~
|
Bl
(L
*
e

= (s % -3)
6
mo=(% % Dtz F DT (H -F 3)
*
= (1 -2 1)

= (1 -2 1)

1.7 Fundamental Observation

If column ! is not a spike (i.e. if v; = 0), then E; = 1 may be omitted
from the factorization of A and the rank-one update corresponding to E; may
be skipped when solving Ax = b, A = 4 or even wiA;_; = ufl. This
simplification significantly reduces the size of the computations when the matrix

A is large and has few spikes.

Example:

This example shows how to factorize a 5 X 5 matrix whose columns 2 and 4

are not spikes, and how to solve systems like Ax =b or A = «.

1 010 1 6
0 1000 1
A=|-10101 b=|6 ¥y=(1 3 3 2 3)
0 1110 6
1 1011 8
10




- E2=I

* * *

= E4—‘=I

- O O

o0 Oo A~

— O - O

O~ O o

T

¢ The vector w; characterizing Ej3 is given by w3A; = u;3.

*)

UJ3=(10 1

14+ (1 0 1 = *)(

e The vector ws characterizing Es is given by wsE3;A; = ug'.

i
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wsEs = (0 0 1 -1 1)

1
0
ws =(0 01 -1 1) —3[(0 01 -1 1)}+]f{(1 0 1 * x)
%*
*
ws =(0 0 1 -1 1)
1
0
6s =1 +(0 01 -1 1)1 = 2
0
*

o The system Ax = b can be written EsE3A;x = b. The vectors bg, b3, b,

and x are the following:

6
(1)
b5 = 6
6
\s/
6 - 6\1 /1 2
(1 1 0 1
by = | 6] ~31(0 0 1 -1 1)]6 1| =12
6 6 0 6
\s/ | 8/] \« 8
2 r 2\1 /1 0
(1\ 1 (o 1
by = [2|-2((1 0 1 « »)}2 * | = |2
6 6 * 6
\8/ i 8/ 1 \« 8

1 * x =x
0 1 *x =
-1 0 1 =
0 1 11
1 1 0 1

12




e The system A = 4 can be written TEsE3A; = 4. The vectors =, =,

75 and 7 are the following:

1 * *x x =
0 1 * =*x =%
m|-1 01 %« x{=(13 3 2 3)
0 1 1 1 =
1 1011

)
w
I
—
(S
—
(=2
]
—
w
N’
|
=
—
nNo
p—
>
|
—

3) (1 0 1 * =)

* X H O

=(11 3 -1 3)

-

1

0
(113 -1 3)f1]|(0 01 -1 1)

0

*

T=(11111)
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CHAPTER 2. THE STREAMLINED METHOD

2.1 Introduction

The basic method of Chapter 1 is not the most efficient way to compute
and use the factorization A = E,E,,_;...E2A,. In this Chapter, we present
a streamlined method that yields the same results as the basic method without
explicitly solving the intermediate system involving the triangular matrix A,. This
decreases by about 33% the upper bound on the number of multiplications required
to compute the factorization of A, the solution of Ax = b or the solution of

A =+.

2.2 Solution of Ax=Db

The basic method explained in Section 1.5 can be streamlined by observing
that z;, the k** component of X, is computed when the rank-one update system

Eibi_, = b; is solved. Consider the following Lemmas:

Lemma 2.2.1 For 2<k<m, ul = 6 'wiA;.

Proof 6, the determinant of E;, is nonzero and

Gkn{ = (14 wive) u{

= u{ + w,,vku',’:

= wiAso1 + wrvpul
- T
= Wi (Ar-1 + Viug)

= kak-

Lemma 2.2.2 For 2<k<m, Aix = b,.

14
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Proof By definition of by and Ak, we have

by = Eibg_

E;Ei_1bi_;
= ExEi_;...EqA;x
= AiX.
Lemma 2.2.3 For 2<k<m, =z = 0;lwkbk.

Proof By Lemmas 2.2.1 and 2.2.2,

T = u,{x

6; 'wiAgx
= 07 'wibs.
Lemma 2.2.4 For 2<k<m, bi.1= by — zx vi.
Proof Starting with Lemma 2.2.2, we obtain
by = Ap_ix

= (A — vkuf) X

= A;x — vkufx

= by — vizi.

Lemmas 2.2.3 and 2.2.4 provide the same update formula as Section 1.5 but
they show that the components zx (m > k > 2) can be computed along with
the vectors bg_; (m 2 k > 2) without additional work. By the time b, is
computed, the only component of x that remains unknown is z;. At that stage,
instead of solving the whole triangular system A,x = b,, we only need to solve
the first equation, of the form A;;z; = ulb;. In summary, we obtain the

following method.

Algorithm 2.2 (tosolve Ax = b))

Let b,, = b.
For k = m downto 2, let xk=9;1wkbk and bi_; = by — zx v;.
Let z, = Af ulb,.

15




This algorithm actually depends on the auxiliary vectors Aj! u] and 67 'ws
(2 < k £ m) which are none other than the vectors ulfA;T (1 <k <m) (f
Lemma 2.2.1). The maximum number of multiplications required by this method
1s
2
Z % + 1~ mt+m.

k=m

This is essentially the same as the maximum number of multiplications required
to solve a system LUx = b where L and U are triangular matrices.

Note that only the first k¥ components of by are needed for these computa-
tions. Therefore, for each k, we may replace by by its projection b: onto the

subspace of R™*! generated by the first k unit vectors.
P g

Example:
8 1 6 24
Consider the 3x3 system Ax =bwhereA= (3 5 7 ]andb={ 14 |.
4 9 2 -8
We know from Section 1.4 that the factorization A = E3E;A; entails the
following auxiliary quantities:
“T'—‘(l * %) Aﬁl:'}i
w2=("% % *) 92—l=§%
wi=(7 -3 1) 65" = -i%

A straightforward application of Algorithm 2.2 yields

24 24
by = | 14 2= -3 (% -4 H[u]=3
_ 24 6 6 6
b,=114}-3|7 -7 Ty = %g (—43_0 % l-71] = -2

* * * *

6 1 8 8
by=|*)+2|*] = | = T = % (1 = =)|{=] =1

* * * *

The final result is the same as in Section 1.5:

NE




2.3 Solution of TA =4«

As in Section 2.2, we can streamline the method explained in Section 1.6 and
avoid solving the complete triangular system involving A;. For 1 < k < m, define
5 asthe projection of 4 onto the subspace Si of R!*™ generated by the first k
unit vectors. Then define 7, as the unique solution of the system T;A; = F,.

Now, consider the following Lemmas:

Lemma 2.3.1 For 1<k<m, T 1isin Si.

Proof The last m — k equations of T A, = %, constitute a full rank
triangular system with null right hand side. Its solution, a vector made of the last
m — k components of T, must be zero.

Lemma 2.3.2 For 2<k<m, (Wk — Ti-1) Ak = (7x — Fik-1Vi) ul ,

where 7 is the k' component of 4 or, equivalently, of %, .

Proof Using essentially the definitions of %, and %, _,, we obtain
TeAr = v
= 7‘71:—1 + ‘Yk“{
= Wi-1Ak-1 + veul
= i1 (A — vkuf) + ‘yku{
= Te1Ax + (6 — Tro1Ve) ug.
Lemma 2.3.3 For 2<k<m, ® = Tx—; + 9;1 (vk — ®r-1Vi) Wk.
Proof The matrix A is non-singular and we have
(e — Tx—1) Ax = (& — Fk—1Vi) s
= (v — Fr1vi) 0 weAs
By Lemma 2.3.1, only the first component of 7; can be nonzero. Therefore,
the system T} A; = %, can be solved in one scalar division as opposed to the
system w;A; = 4 which requires a triangular matrix division. Then, Lemma
2.3.3 shows that the sequence T (2 < k < m) can be computed just as easily

as the sequence 7; (2 < k < m) of Section 1.5. Finally, since 4 = %,,, we have

T = ®,,. In summary, we obtain the following method.

17




Algorithm 2.3 (tosolve WA = «)
Let T, = Y1 Al.ll u’lI‘_
For k = 2 to m,let éx = e —Tix—1Ve and T = Tr—y + &k 9,;'1 Wk.

Let ®# = Hpm.

Once again, this algorithm actually depends on the vectors ufA;' (1<k <

m). The maximum number of multiplications required is

m
1 4+ 2% ~ m?+m.
k=2

Example:
8 1 6

Consider the 3 x 3 system wA =+ where A=[3 5 7] and ¥4 =
4 9 2

(6 0 —6). We know from Section 1.4 that the factorization A = E3E;A;

entails the following auxiliary quantities:

T -1 _

u =(1 * x) Au:%
— 1 -1 _ 40

U,2 ‘—26 3 *) 02 —577-
_ 1 34 -1 _ 37

wi=(% -% 1) 65" = -1

A straightforward application of Algorithm 2.3 yields

"1F1=6%(1 * *)=(% x  *)

52=0—-(% * *)(i):—%
*
N Y I RN e
& = -6 — (3 -F *)(g) = -2
*
Fo- (-4 )+ ®EE ¥ D=0 2,

r =(1 -2 1).

18




2.4 Computation of the Factors Ex (2 <k <m)

The system wiAi_, = u{ defining wy can be written

A 0 O
Wil p « 0) =(0 1 0)
B ¢ D

where A is the (k — 1) x (k — 1) leading submatrix of A or Ax—;, and a is the k**
diagonal element of A or Aix_,. Assuming that A,_, is non-singular, this system

1s equivalent to
wy = a (e 1 0) and TA = —p.

From the relationship Ax_y = (I+ vi—1wWi—1) (I + vi—2wi_2)... (I + vaw,)
A, wederive A = (I4+¥_1Wx_)(I+Vi—2@i—2)...(I+ V@) A, where v/ is
the (k — 1) x 1 leading submatrix of v;, @; is the 1 x (k — 1) leading submatrix of
w; and A is the (k — 1) x (k — 1) leading submatrix of A;.

When we compute the vector w;, we already know the vectors w; (2 <
[ <k—-1) and hence the vectors @; (2 <! < k —1). Therefore, we can apply
Algorithm 2.3 to solve the (k — 1)-dimensional system wA = —p.

The maximum number of multiplications or divisions required to compute

(W, 8:) by this method is
K-k + k + k-1=~ Kk +k
and the maximum number of multiplications required to factorize A is
m
Zk2 +k = tm® 4+l
k=2

This is essentially the same as the maximum number of multiplications required

to compute the triangular factorization A = LU by Gaussian elimination.

19




Example:

-3

4 9

[3v]

8 1 6
Consider the 3 X3 matnx A = 3 5 .

e We have 4;, = 8.

o The factor E; = I+ vow; is computed from w,A; = ul.
a = 3
x(8) = (-3)
® = (-}
wp = 3(-§ 1 x) =(-% 5 *)

e The factor E;3 = I+ viw; is computed from w3;A,; = uj
a = 2
8 3
1r(1 5) = (-4 -9)
o= (-3 *)
= 1
m o= (- x4 o)) 85 b
"= -8
wy = 3(5 -7 D =(x5 -5 3)

6
b =1+ (m-% 1 (7
*

2.5 Simplification Applicable to Non-Spikes

We saw in Section 1.7 that if column [ is not a spike of A, the Basic Method

does not require the computation of the auxiliary vector wy. This simplification is

not directly transferable in the Streamlined Method, because algorithms 2.2 and

2.3 appear to require the computation of all the intermediate quantities like z,

or T;, and hence of all the vectors w;.
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However, if the spikes of A were its rightmost columns, the leading t x t
submatrix T associated with the t non-spike columns of A would be trianguiar.
Then. the vectors Gl"lwl (1 €1 < t) would represent the rows of T~!. Moreover,
the steps of algorithms 2.2 and 2.3 corresponding to spike columns & could be
carried out as earlier with the vectors wy, while those corresponding to nonspike
columns [ rould be replaced by solving a system explicitly involving the triangular
matrix T instead of the vectors wj.

In order to implement this idea when the matrix A is arbitrary, we can per-
mute the columns of A according to the permutation matrix Q that sends the
spikes of A to the right while preserving the order of the non-spikes and that of
the spikes, and permute the rows of A symmetrically, i.e. according to the per-
mutation matrix Q7. Let A’ 2 QTAQ be the resulting matrix. Let q be the
permutation of {1,2,...,m} induced by Q (i.e. ugy) = QTu;). Then we have

the following Lemma:

Lemma 2.5.1 Column j is a spike of A if and only if column q(7) is a spike
of A'.

Proof If column j is a spike, then 3¢ ¢ < j and A;; # 0. By construction,
if column j is a spike of A, then 11 <j; = q(¢) < q(y) . In addition,
Al = ul yAlugg) = u/Q QTAQ QTu; = uTAu; = A4,; # 0. Therefore,
column q(J) is a spike of A'.

Conversely, if column q(j) is a spike of A, then 3i q(7) < q(j)andA_;)q¢;) # 0
. Either : < j or j < i. In the former case, 3¢ : < j and A;; # 0. In the latter

case, column j which stood to the left of column ¢ in A will stand to the  °©

column : in A’. Either way, column j must be a spike of A.

By Lemma 2.5.1, A and A’ have the same number s of spikes and the same
number ¢ = m — s of non-spikes. Since the t leftmost columns of A’ are not spikes,

the decomposition

A' = A, + viul + viul + ... 4+ viul = E, E! ... E3 A}

m m-—1
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satisfles vf = vi = ... = v; = 0 and E} = E} = ... = E; = L In
particular, A} is triangular.
To solve Ax = b, we consider the equivalent system A'x' = b’ where

A a .
= QTx and b' = QTb. The last s components of x' are computed as in

'
Section 2.2 using the vectors wj (m > k > t), and the first ¢ components of x’
are solved through the first ¢ equations of the triangular system Ajx' = b;.

To solve wA = 4+ , we consider the equivalent system #'A’ = 4’ where
x 2 ©Q and 4’ 2 4Q . The vector T, is given by the triangular system
7,A, = %, and the last s vectors ) are computed as in Section 2.3 using the
vectors wj (t < k < m).

To compute the non-trivial factors E}, (¢ < k¥ < m), we decompose the system
WiAL_; = uf into wiy = a”!(w 1 O0)and WA = —p as shownin
Section 2.4 and solve the latter system as indicated in the previous paragraph.

That way, all computations can be carried out solely with the auxiliary quan-
tities (w}, 85) (t < k < m) corresponding to spikes (vi # 0). Because the spikes
have been shifted to the right in A’, the number of nonzeros above the diagonal

in the spikes may increase. However, the number of nonzeros in the vectors w;

remains unchanged as the following Lemma indicates:

Lemma 2.5.2 If column k is a spike of A, then w("(k) = w;Q and
= 0.
Proof Let k' = q(k). We have, by definition of w;,,

1]
oq( k)

wi AL _, = ul,
and, by definition of wy,
kak—l = u[
wiQ QTAw1Q = uiQ = ul,;, = ui. .
- T . X Z ) . .
Partition Q" A,_;Q into Y T where X is a k' x k' submatrix. Then

= 0, X and T have full rank and X equals the leading k' x k' submatrix of
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A' = QTAQ. Therefore, the last m — k' components of wj}, and of w;Q are

zeros while their first k' components are solutions of the same well determined
system. Thus w;(k) = wiQ.

Finally, since the first k' components of v;( xy and Q7 vy are equal, we have

/ — ' '

a = 1 ¥ WamVak)
= 1 + wiQiQivi
= 1 + WiV

= 0.

Example:

This example shows how to permute and factorize a 5 X 5 matrix whose
columns 2 and 4 are not spikes, and how to solve systems like Ax = b or TA = «.

In this case, the permutation Q will simply interchange columns 3 and 4.

1 0101 6
0 1000 1
A=]-10101 b=|6 y=(1 3 3 2 3)
0 1110 6
1 1011 8
1 00 11 6
0 1000 1
A=|0 1110 b=|6 4 =(1 3 2 3 3)
-1 00 11 6
1 1101 8
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A'1=A'2=A3=

o The factor Ej

e The factor Ej

I

8

oo

O = o~ #

* O~ % *

* % X
1 = =x
1 1 =
0 = 1
110
* * 1
1 = 0
1 11
0 = 1
1 10
* x 1
1 = 0
1 11
0 = 1
1 10
= I+ viw;

1)

1
0
0
1
1

is computed from wjA} = uj.
a =1
*
r = (1 0)
1 *)_—_(1 0 = 1 =)
1
0
* 1 x)]1 = 2
*
*
= I+ viw)} is computed from wzA; = ul.
a =1
1
1=t -1 210
1
?3 = (—1 0 -1 *)




=)
w

wg =170 0 -1 1 1) =(0 0 -1 1 1)
1
0
o, =1+(0 0 -1 1 1)[0] =2
1
*
e The vector x is computed from EjE{A}x' =b'
6
9
=19 ) ]
6 gy = 30 0 -1 1 1)
\s/ P
6 1 2
(1) (o) [:
= 6 — 410 = 6 .
6 1 2 Ty = (1 0 0 1 %)
N A R
2 1 0
(1\ (0\ (1\ 1 * = ]
= |61 —2|1}| = |4 (0 1 *) (:1:'2 =
* * * 011 x4
SR b 3

]
i
>N WO
H]
i
W~ O

e The vector 7 is computed from w'E{E A’ = «'.

TLA, = (1 3 2 % %)

;o= (1 1 2 x x)




~

*) +13—-(1 1 2 0 =)

1)
=(1111 1)

T =(1 111 1)
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CHAPTER 3. NUMERICAL STABILITY

3.1 Introduction

In Chapter 2, we showed how to factorize a matrix A under the assumption
that the matrices Ax (1 < k¥ < m) were non-singular. In this Chapter, we
decompose this assumption into two conditions and show that a rescaled version
of the same factorization can be obtained under only the first condition. We
recall that if A is non-singular then its columns can be permuted so that the
resulting matrix satisfies the first condition, and indicate a procedure to carry
out simultaneously the permutation and the factorization. This procedure offers

a numerical stability similar to that of LU decomposition with partial pivoting.

3.2 Definitions and Notation

A unit upper triangular matrix is an upper triangular matrix whose entries

on the diagonal are equal to one.

Let A be a square matrix. Let B be a square submatrix of A. We define the
minor of A associated with B as the determinant of B. A leading minor of A is

a minor associated with a leading submatrix of A.

Let A,v and w be respectively an m xn, an m x 1 and a 1 x n matrix. Then,

for k < m and k < n, (A), (v)r and (w)i denote respectively the k x k leading
submatrix of A, the k x 1 leading submatrix of v and the 1 x k leading submatrix

of w. Unless indicated otherwise, A, Vi and Wj are abbreviations for (A)x,

(Vk)k and (wk)k.

3.3 Conditions on the Matrices A; (1 <k <m)
In Chapter 2, we assumed that the matrices Ax (1 < k£ < m) were non-
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singular. Because of their structure, we have
m m
det Ay = detA, [ Au = detAy IT (A
I=k+1 I=k+1
Therefore, the matrices Ay (1 < k < m) are non-singular if and only if the
matrices Ag (1 < k£ <m) and the matrix A, are non-singular.

It is well known that if A is non-singular, then its columns can be permuted
according to a permutation matrix Q such that the leading square submatrices of
AQ are non-singular. Actually, the columns of A can be selected step by step: at
step k, a column is chosen for k** position so as to maximize the absolute value of
the resulting k** leading minor. In practice, this procedure yields well conditioned
leading submatrices, as observed in the LU decomposition algorithm with column
interchanges. Therefore, we shall follow a similar procedure.

Regarding the non-singularity of (AQ);, i.e. the absence of zeros on the
diagonal of AQ, we shall see in Section 3.6 that the issue is rendered moot by

rescaling the vectors representing the factorization.

3.4 LU Decomposition with Column Interchanges
In this Section, we recall some useful properties of the LU decomposition of

square matrices (Murty, 1976).

Lemma 3.4.1 For any m x m matrix A, there exist a lower triangular
matrix L, m — 1 transposition matrices Tz (1 < k < m) and m — 1 unit upper

triangular matrices U (1 < k£ < m) such that
L ==.AﬂhIJ{TZLh..JPm_Ian_L

Proof (and algorithm 3.4) Let A = A. Given A*~1, let j; satisfy

k-1 k-1
IAi,,-,, )| = maxegj<m IAS:,)‘ ).

If Ai’f;” =0, A~V is singular. Let Ty = U =1
Otherwise, interchange columns k and ji, i.e. postmultiply A*~1) by the

transposition matrix Tk, j, (abbreviated to Ti) derived from the identity matrix
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by interchanging columns & and j;. Then zero out the entries of row k to the right
of column k by adding appropriate multiples of column k to columns k+1,... m,
i.e. postmultiply A*~1DT, ;. by a unit upper triangular matrix Uy with the
appropriate entries in row k.

In either case, we have
AR = A=D, U, forl<k<m-1

where the strictly upper triangular part of A(¥) has zero entries in its k first rows.
After m — 1 iterations, we obtain A(™~D = AT U, T,U,... Tm_1Um_s

where A(m—1) is lower triangular.

Lemma 3.4.2 For 0 <k<m-1,let A® = AT, U,T,U,...T U,
be the k'? jterate in the LU decomposition of A. Then A = AT, T,... T U
where U} is a unit upper triangular matrix whose last m — k rows equal those
of the identity matrix.

Proof (by induction) A(®) = AI. Assume that

A("‘l)=AT1T2...T;¢..1U',¢_1 where Uj_, = (Vk—l Qe )
0 Lm—k41
Then
, _(V a\(I o
Ui Te = (o I)(o s)
_ (Vv as
- 0 S
_ (I o\(V as
—\o S 0 I
= Tk ;c—l
and

A® = A%-Dr.U,
= AT,T;...T4—1U}_, T:U;
= AT\T;... Te—1 T Vi_ Uk
= AT\T;...Tx_1 T: U}
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where Vi _,, Uy and U}, = V| _, Uy are unit upper triangular matrices whose last

m — k rows equal those of the identity matrix.

Corollary 3.4.3 There exists a lower triangular matrix L, a unit upper tri-

angular matrix U and a permutation matrix Q such that LU = AQ.

Corollary 3.4.4 For 1< <k, the I** leading minor of A*) and that of
AT, T,... Ty are equal:

det (A®), = det(AT;T;...Ts):.

Corollary 3.4.5 If A is non-singular, the first k£ leading minors of the

product AT;T,... T are nonzero:

det (AT T;...Ti); = det (A(k))l
k (k k
= AF) AF) ... A}

= ATV ALY LAY,

Corollary 3.4.6 I A is non-singular, the k*» pivot is the ratio of the k**

leading minor over the (k — 1)** leading minor of AT, T, ... Ty:

AW _ et det AT Ty . Tak
ki det (A(k))k—l det (ATI Tz Ty )k—l .

Therefore, in terms of the matrix AT, T;... Tk, the following column selec-

tion rules are equivalent:

(1) given the first k — 1 columns, select the k** column so as to maximize the
absolute value of the resulting k** pivot.

(2) given the first k — 1 columns, select the k** column so as to maximize the

absolute value of the resulting k** leading minor.
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3.5 An Alternate Computation of the Pivots
In this Section, we show how to compute the potential pivots through some
auxiliary vectors oy (1 < k < m), without explicitly carrying out any LU decom-

position.

Lemma 3.5.1 Let A be a non-singular m x m matrix. Let 3x (1 < k < m)
be the sequence of pivots generated by the LU decomposition of A as described
in Section 3.4. Let Q = T;T;...Tn-1 be the permltation matrix resulting
from the same LU decomposition. Let A’ = AQ. Let (A;:k"l 2: ) , Where ag
is a scalar, represent the k x k leading submatrix of AT, T;... T, and hence the
k x k leading submatrix of A’. Let K 2 {1...k}.

Then, for 1 < k < m, the m-vector o 2 (_pkK_'k:ll 1 0) is well
defined and the pivot Bi is given by the scalar product fx = T Al,;.

Proof By Corollary 3.4.5, A’x_; is non-singular and by Corollary 3.4.6,

det (Tk_l ak)
Pk (s
det X'.k_x

— -1
= ap — prA'r_ 2k

—_ =1 Ak
= (-psAT, 1)(ak)

. [
= Ok AKk'

we have

Br =

Note that for 1 < k < m, Bx # 0 because A is non-singular (cf. Corollary
3.4.3).

The algebraic relationships mentioned in Section 3.4 hold independently of
the pivot selection rule. Therefore, at step k, all potential pivots can be computed
as products of the form @ ,c where ¢ is one of the unsélected columns of A k,, i.e.
one of the m — k + 1 rightmost columns of A’,. In other words, the potential
pivots are the m — k + 1 rightmost elements of the vector A = FkA’K? where
K2 {k...m).
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3.6 Factorization with Column Interchanges

If A is non-singular, the column interchange method described above provides
a permutation matrix Q = T,T;...T,, such that A’ = AQ has nonzero leading
principal minors. The following theorem explains why the factorization and the

column permutation can be carried out simultaneously.

Theorem 3.6.1 Let A be a non-singular m x m matrix. Let Q, A’ and
(&k,Bk) (1 <k <m)be as defined in Lemma 3.5.1. Let ax (1 < k < m) denote
the diagonal elements of A'. If, for 1 < k <m, ai # 0, then A’ can be factorized
as described in Chapter 2. and the sequence (W, 8x) (2 < k < m) resulting from

this factorization satisfies
Wi = a;ldk and 6, = a;lﬂk for2<k<m.

Proof The matrix A} _, is non-singular and we have

L Ay 0 O
akA’k-Ax = (_pkA'k-l 1 O) Pk ar O = (0 o 0) = oy uf.
* * %*

Therefore oxA)_, = axwiA,_, and wi = a;'o . Finally, we have

-K'-k—l ag
detA; det ( Pk ak) _ ak‘PkA'k_llak _ _B_k_

0 = detEx = = _f = Y
. det A, _, det (A',,_l 0) o ak

Pk Qg

Since &y can be regarded as the value that wi would take if ax were equal to
one, it can be computed at least as easily as wj. As a matter of fact, the method
used in Section 2.4 to compute w; entails the computationof oy = (®# 1 0)
where ®Ax_; = —p; is solved by Algorithm 2.3.

In addition, Theorem 3.6.1 implies that, for 2< k <m, 7'wi = f;'0o%.
Therefore, in Algorithms 2.2 and 2.3, the sequence (0x, (k) (2 < k < m) can
replace the sequence (Wi, 8:) (2 < k < m) which need not be computed.
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Finally, if A is non-singular then the sequence (k, Bk) (1 £ k < m)is well
defined whereas the existence of (wk,8x) (2 < k < m) also depends on whether
the coefficients aj are different from zero.

All these considerations lead us to redefine the factorization of A' in terms of
the sequence (@, Jx) (1 < k < m). Using the notation of Section 3.5, we end up

with the following method.

Algorithm 3.6 (to generate Q and factorize A' = AQ)
Let A’ = A.
For k¥ = 1 to m, do the following:
o Solve TA'4_) = —prk.
eletory = (® 1 0).
e Compute the vector of potential pivots A = TLA &
o Select a pivot column jx such that |A;,| = maxkg<m YR
eLet A’ = A'Ty,.
o Let 3x = Ay,
o If 3x = 0 then stop (A is singular).

Example: Consider the 3 x 3 matrix introduced in Section 1.2:

8 1 6
A=135T7].
4 9 2
e Step1 Column 1 has the entry of largest absolute value in row 1. There-
fore, column 1 remains in first position.
oy = (1 * *)

A=(1)(8 1 6)=(8 1 6)
By = 8

¢ Step 2 We compute the vector ;:

o2 (§ ?) = (0 1)
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o, = (® 1 +) where = (8) = (-3)

The potential pivots are given by

A= (-

@jw

WEHENC )

We select 3, = %g- = 14-9- from column 3 which moves into second position.

¢ Step 3 We compute the vector o3:

8 6 0
osl3 7 0]=(0 0 1)
4 21

o3 =(m 1) where r(g 2) = (-4 -2)

1

The only remaining pivot is given by

1
180
A=(—%:—91)(g)=79—
B = 4P
e Summary

8 1 6 1 00 8 6 1
A'=AQ=1|3 5 7 00 1)]=|37325
4 9 2 010 4 2 9




8 * =x
A'lz 3 7 = 61'——(1 * *) ﬁl=8
4 2 9 6
8 6 . V2= *
*
A,=13 7 = or=(-3 1 %) By =1
4209 , [}
8§ 6 1 va= o
*
Ay=13 7 5 os=(-13 % 1) By = 12
4 2 9

3.7 Rescaling of the Matrix A

To reduce the number of divisions during the factorization of a matrix, it may
be worthwhile to rescale the columns of the matrix so that the resulting pivots
Bk (1 € k < m) are equal to one. For this rescaling to speed up the factorization,
the number nz of nonzero elements off the diagonal must be less than the number

of divisions by S :

m(m ~ 1)

nz < Z(m -k)= 5
k=1

Therefore, the density of the matrix must be less than % This procedure does not
affect the number of divisions involved in solving the system Ax = b for instance,

because of the unscaling of x.

Example:

8 1 6
Consider the 3 x 3 matrix introduced in Section 1.2 A = (3 5 7) .

4 9 2
20)

After the example of Section 3.8, it is easy to see that the matrix

8 1 6\ /1 0 0\ /3 0
A"=AQS=1{3 5 7|0 0 1}[0 0 | =
4 9 2/\0 10/\0 0 {
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has all its pivots equal to one.
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CHAPTER 4. SPIKE REDUCTION

4.1 Introduction

The method presented in Section 2.5 to factorize a matrix A and to solve a

system AX = b or TA = 4 will work better if the ninmbher of auxiliary veciors wy

(or ork) is smaller, and, given their number, if their size is smaller.

The most obvious way to achieve these goals is to reduce the number of spikes

of the matrix A and, whenever possible, to shift those spikes towards the left. To

that end, we describe three myopic algorithms, inspired by Hellerman and Rarick’s

P3 procedure (Hellerman and Rarick, 1972), that reorder the matrix by selecting

some rows and columns, assigning them a position, deleting them and repeating

the process on the resulting submatrix until all rows or all columns have been

assigned.

4.2 Definitions and Notation

Let : and j denote a row and a column index of A. If A4;; # 0, we say that row

¢ “intersects” column 7, that column ; “intersects” row i or that row i and column

J “intersect”. We define the following:

ROWSPAN(s)

COLSPAN(j)

ROWCOUNT(s)

COLCOUNT(j)

ROWTALLY((4)

COLTALLY(j)

the set of columns j intersecting row 1.

the set of rows i intersecting column j.

the number of nonzero entries in row i.

the number of nonzero entries in column j.

the number of nonzero entries in the columns intersecting row 1.

the number of nonzero entries in the rows intersecting column j.
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ROWSPAN(i) = {7 : Aij #0}
COLSPAN(j) 2 {i: Ai; #0}
ROWCOUNT(3) = |ROWSPAN(s)|

a
COLCOUNT(j) = |COLSPAN(j)}

A
ROWTALLY (i) = Z COLCOUNT(j)
JiAij #0

N
COLTALLY(j) = E ROWCOUNT(i)

i1 Aij #0
A line of a matrix A is a row or a column of A. At iteration k, the “active

submatrix” is the submatrix obtained after deletion of the lines selected during

iterations 1,...,k — 1.

4.3 Top-Left Spike Reduction Algorithm

This algorithm essentially keeps selecting from the active submatrix a row to
be placed at the top of the unassigned rows and a matching column to be placed
to the left of the unassigned columns. This amounts to identifying the coefficient
of the active submatrix to be placed in the top-left corner.

More precisely, at iteration k, a row with the fewest nonzero entries is se-
lected from the active submatrix and assigned position k (the highest available).
If some columns of the active submatrix intersect that row, one of them is as-
signed position k (the leftmost available) and the others are sent to a spike-index
queue. Otherwise, a column is removed from the spike-index queue according to
the First-In-First-Out (FIFO) priority rule and assigned the position k. Finally,
the active submatrix is updated by deletion of the selected row and of the columns
intersecting it.

Termination occurs when all columns have been deleted. Then the undeleted
rows are assigned the bottom positions, the columns remaining in the spike-index
queue are removed in FIFO order and assigned the rightmost positions. Under

this algorithm, deletion of all rows cannot occur before deletion of all columns.
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In addition, note that the spikes added to the queue during iteration k will
have zero entries above row k and a nonzero entry in row k of the current matrix,
and that the only unassigned columns with nonzero elements above row k are
already in the spike queue. Therefore, if no column intersects the selected row
and no spike is available in the queue at iteration k, then the first £ rows of
the reordered matrix contain only k — 1 nonzero columns and the matrix A is
structurally singular (i.e. singular for any values given to the nonzero coefficients).

Finally, the FIFO priority rute used in removing the indices from the spike-
index queue produces spikes in order of non-increasing heights, which prevents
the structural singularnity of the leading submatrices, unless the whole matrix A
is itself structurally singular.

The Top-Left spike reduction algorithm is listed below:

Let £ = 0.

Repeat
Let k=k+1;
TOPLEFT(k);

until all columns are deleted.
Assign undeleted rows positions {k +1...m}.
Remove columns remaining in spike-index queue (FIFO).
Assign these columns positions {k + 1...m}.
The procedure TOPLEFT(k) consists of the following instructions:
o Select from the active submatrix a row i; minimizing ROWCOUNT(i). Break
ties by maximizing ROWTALLY(i).

o Assign row i; position k.

o If ROWCOUNT(i,) # 0, then
select a pivot column j; from the columns intersecting row ix;
assign column j; position k;

add the other columns intersecting row i; to the spike-index queue.

39




e If ROWCOUNT(ix) = 0, then
remove the FIFO column from the spike queue and assign it position k.

e Delete row i; and the columns intersecting row 1.

4.4 Bottom-Right Spike Reduction Algorithm

Instead of building the new matrix from the top-left corner to the bottom-
right one, the second algorithm does it in reverse direction, skipping some spaces
for the spikes. It essentially keeps selecting from the active submatrix a column to
be placed to the right of the unassigned columns and a matching row to be placed
at the bottom of the unassigned rows. This amounts to identifying the coefficient
of the active submatrix to be placed in the bottom-right corner.

At each iteration, a column with the fewest nonzero entries is selected from
the active submatrix. If some rows of the submatrix intersect that column, they
are assigned the positions at the bottom of the submatrix, the selected column
is assigned the rightmost position p allowing it to fit on and below the diagonal,
and the unassigned positions to the right of p are sent to a spike-position queue.
Otherwise, a position is removed from the spike-position queue according to the
First-In-First-Out (FIFO) priority rule and the selected column is assigned that
position. Finally, the active submatrix is updated by deletion of the selected
column and of the rows intersecting it.

Termination occurs when all rows have been deleted. Then the undeleted
columns are assigned the positions remaining in the spike-position queue. Note
that, under this algorithm, deletion of all columns cannot occur before deletion of
all rows.

If no row intersects the selected column and no spike-position is available in
the queue at iteration k, then some ! columns of A contain at most ! — 1 nonzero
rows and the matrix A is structurally singular.

The Bottom-Right algorithm obtains the spikes in order of non-decreasing
heights, but it allocates them from right to left. However, the Bottom-Right
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algorithm, listed below, usually yields fewer spikes than the Top-Left algorithm:
Let k =m + 1.
Let py = m + 1.
Repeat
Let k =k -1,
BOTTOMRIGHT(k);
until all rows are deleted.
Assign the undeleted columns the spike-positions remaining in queue.
The procedure BOTTOMRIGHT( k) consists of the following instructions:
e Select from the active submatrix a column jx minimizing COLCOUNT(j); break
eventual tie by maximizing COLTALLY(j).
¢ Update the rightmost non-spike position px = px41 — COLCOUNT(j).
e If COLCOUNT(x) # 0, then
assign column j; position pg;
select a pivot row from the rows intersecting column ji;
assign the pivot row position pk;
assign the other rows intersecting column j; the positions in the range
pe+1...pk41—1;
add px + 1,...,pk+1 — 1 to the spike-position queue.
o If coLcouNT(i) = 0, then
remove the FIFO position ¢ from the spike-position queue;
assign column j; position q.

e Delete column j; and the rows intersecting column ji.

4.5 Composite Spike Reduction Algorithm

The third algorithm is a combination of the first two. At odd iterations, it
selects and deletes a column and the rows intersecting it (using the procedure
BOTTOMRIGHT). At even iterations, it selects and deletes a row and the columns

intersecting it (using the procedure TOPLEFT).
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Termination occurs when all rows have been deleted. Then, the undeleted
columns are added to the spike-index queue. Finally the columns remaining in the
spike-index queue are matched with the positions remaining in the spike-position
queue.

Empirically, this algorithm appears to combine the speed of the first one (i.e.
it requires a small number of iterations) and the efficiency of the second one (i.e.
it yields a small number of spikes).

The composite spike reduction algorithm is listed below:

Let k =m + 1.
Let py =m + 1.
Let k' = 0.
Repeat
If not all columns are deleted then
Let k =k —1;
BOTTOMRIGHT(k).

If not all rows are deleted then
Let &' = k' +1;
TOPLEFT(k').
until all rows are deleted.
Add undeleted columns to the spike-index queue.

Match remaining spike-indices and remaining spike-positions.

4.6 Examples

In this paragraph, we apply the three algorithms described above to an 8 x 8
matrix. Although the numerical values of the nonzero coefficients are not needed,
they are represented for the sake of consistency with the example used in Chapter
4. SI queue and SP queue denote the spike-index queue and the spike-position

queue respectively. The columns belonging to the SI queue are printed in italic.
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4.6.1 First algorithm:

1 2 3 4 S 6 7 8
1 800 900 5.00 1.00 -7.00
2 3.00 800 200
3 6.00 4.00
4 -3.00 5.00 -9.00 2.00
5 400 -7.00 3.00
6 ~2.00 S.00 -1.00
7 5.00 -8.00 200 6.00 -4.00
8 500 200 3.00
count 2 S 3 S 3 3 3 4
Matrix O

Iteration 1

Row 3 is selected and assigned position 1.

Columns 4 and 5 are selected.

count

HAWUW LNLWW

Column 4 is assigned position 1 and column 5 is sent to the SI queue.

4
3 6.00
! 1.00
2
4 -9.00
S 3.00
6
7 5.00
8
count

Iteration 2

1 2 3 6 7 8 5
400
8.00 900 500 -7.00
3.00 800 200
-3.00 5.00 2.00
4,00 -7.00
5.00 -1.00 -2.00
200 6.00 -4.00]-8.00
5.00 2.00 3.00
2 S 3 3 3 4
Matrix la

Row 5 is selected and assigned position 2.

Columns 2 and 3 are selected.
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Column 3 is assigned position 2 and column 2 joins column 5 in the SI queue.

4
3 6.00
] 3.00
1 1.00
2
4 -9.00
6
7 5.00
8

count

Iteration 3

3 1 6 7 8 5
400
-7.00
5.00{ 8.00 -7.00
8.00 200
-3.00 2.00
5.00 -1.00 -2.00
200 6.00 -4.00}F8.00
2.00 3.00
2 3 3 4
Matrix 2a

Row 8 is selected and assigned position 3.

Column 8 is selected and assigned position 3.

4
3 6.00
S 3.00
8
1 1.00
2
4 ~9.00
6
7 S.00

count
Iteration 4

3 8 1 6 7 5
4.00
-7.00
200 300
5.00 -7.00f1 8.00
8.00 200
2.00] -3.00
5.00 -1.00}F2.00
-4.00 2.00 6.00}8.00
2 3 3
Matrix 3a

Row 1 is selected and assigned position 4.

Column 1 is selected and assigned position 4.
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count
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4 3 g ] 6 7 S 2 count tally

3 6.00 4.00 [ |
5 3.00 -7.00 400

8 200 300 500

1 1.0 500 -7.00 8.00 900

2 800 200 J.00 2

4 -9.00 2.00 -3.00 5.00 0

6 5.00 -1.00r2.00 2

7 S.00 -4.00 2.00 6.00-8.00 2

count 3 3
Matrix 4a

Iteration 5
Row 4 is selected and assigned position 5.

Column 5 is removed from the bottom of the SI queue and assigned position 5.

4 3 8 1 S 6 7 2 count  tally
3 6.00 4.00
5 3.00 -7.00 400
8 2.00 3.00 500
! 1.00 5.00 -7.00 8.00 900
4 -9.00 2.00 -3.00 500
2 8.00 2.00) 300 2 6
6 -2.00f S5.00 -1.00 2 6
7 5.00 -4.00 -8.00L 200 6.00 2 6
count 3 3
Matrix S5a

Iteration 6
Row 2 is selected and assigned position 6.
Columns 6 and 7 are selected.

Column 6 is assigned position 6 and column 7 joins column 2 in the SI queue.
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4 3 8 f S 6 2 7 count  tally

3 6.00 4.00

S 3.00 -7.00 4.00

8 200 300 5.00

1 1.00 S.00 -7.00 8.00 9.00

4 -3.00 200 -3.00 5.00

2 800 300 200

6 -2.00 5.00 -1.00 0
7 5.00 -4.00 -8.00 200 6.00 0
count

Matrix 6a

After 6 iterations, all columns have been deleted. The remaining rows 6 and 7
are assigned the remaining positions 7 and 8, as are the columuns 2 and 7 left in the
SI queue. The final matrix has three spikes, namely columns 5, 2 and 7 in positions
5, 7 and 8 respectively. By interchanging columns 5 and 7, we would obtain only
two spikes but the resulting 5 x 5 leading submatrix would be structurally singular.

The FIFO rule prevents such occurences when the whole matrix is non-singular.

4.6.2 Second algorithm:

i 2 3 4 5 6 7 8 count

1 8.00 900 500 1.00 -7.00 S
2 3.00 8.00 200 3
3 6.00 400 2
4 -3.00 5.00 ~9.00 2.00 4
5 400 -7.00 3.00 3
6 -2.00 5.00 -1.00 3
7 5.00 -8.00 200 6.00 -40 S
8 5.00 2.00 3.00 3
count 2 S 3 S 3 3 3 4

taily

Matrix O

Iteration 1

Column 1 is selected and assigned positionp =9-2=17,
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Rows 1 and 4 are selected and assigned positions 7 and 8.

Position 8 is sent to the SP queue.

2 3 4 S 6 7 | 8
2 3.00 8C0 200
3 600 400
S 400 -700 300
6 -2.00 500 -1.00
7 5.00 -8.00 200 6.00 -4.00
8 5.0 200 3.00
1 9.00 500 1.00 8.0 -7.00
4 5.00 -3.00 -3.00 2.00
count 3 2 3 3 3 3 2
tally 6 8
Matrix 1b
Iteration 2
Column 8 is selected and assigned position p =7 —2 = 5.
Rows 7 and 8 are selected and assigned positions 5 and 6.
Position 6 joins 8 in the SP queue.
2 3 4 S 8 7 1 6
2 3.00 2.00 8.00
3 6.00 400
S 400-7.00 3.00
6 -2.00 -1.00 5.00
7 5.00 -8.00 -4.00 6.00 2.00
8 5.00 200 3.00
) 9.00 5.00 1.00 -7.00 8.00
4 5.00 -9.00 2.00 -3.00
count 2 1 2 2 2 2
tally
Matrix 2b

Iteration 3
Column 3 is selected and assigned position p =5 -1 = 4.

Row 5 is selected and assigned position 4.
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2 4 S 3 8 7 1 6 count

2 J.00 2.00 8.00 3
3 6.00 409 2
6 2.0 -1.00 2.00 3
S 400 3.00 -7.00
7 5.00 -8.00 -400 6.00 2.00
8 S5.00 2.00 3.00
! 9Cc0 1.00 5.00 -7.00 8.00
4 5.00 -9.00 2.00 -3.00

count ! 1 2 2 2

tally 3 2

Matrix 3b
Iteration 4
Column 2 is selected and assigned position p =4 -1 = 3.
Row 2 is selected and assigned position 3.
a 5 2 3 8 7 16 count

3 6.00 400 2
6 -2.00 -1.00 5.00 3
2 3.00 2.00 8.00
S 3.00 4.00 -7.00
7 5.00 -8.00 ~4.00 6.00 2.00
8 5.00 200 300
1 1.00 9.00 5.00 -7.00 8.00
4 -9.00 S.00 2.00 -3.00

count | 2 1 1

tally 2 3 3

Matrix 4b

Iteration 5
Column 6 is selected and assigned positionp =3 ~1 = 2.

Row 6 is selected and assigned position 2.
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4 6
3 Ceed
& 5.00
2 800
S 300
7 S.00 200
8
1 1.00
4 -9.00
count 1
tally

Iteration 6

3.00
400

5.00
9.00
5.00

3 8 S | 7
s R —
-2.00 -1.00
2.00
-7.00
-400 -8.00 300
200 3.00
5.00 -7.00 8.00
2.00 -3.00
1 0
Matrix 5b

Column 7 is selected and assigned position ¢ = 8.

Position 8 is removed from the SP queue.

4 6
3 Ce00]
6 5.00
2 8.00
) 3.00
7 500 200
8
1 1.00
4 -9.00
count |
tally 2

[teration 7

3.00
4.00

S.00
9.00

5.00

3 8 5 1 7
[_4.00
~2.00 -1.00
2.00
~-7.00
-400 -8.00 6.00
200 300
5.00 -7.00 8.00
2.00 -3.00
I
2
Matrix 6b

Column 4 is select~d and assigned position p =2 -1 = 1.

Row 3 is selected and assigned position 1.
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4 6 2 3 8 S 1 7 count
3 6.00 400
6 5.00 -2.00 -1.00
2 800 300 2.00
S 3.00 400 -7.00
7 500 200 -400 -8.00 6.00
8 5.00 200 300
| 1.00 9.00 S00 -7.00 8.00
4 -32.00 5.00 2.00 -3.00
count 0
tally
Matrix 7b

After 7 iterations, all rows have been deleted. The remaining column 5 is
matched with the position remaining in the SP queue. The final matrix has only

two spikes, namely columns 5 and 7, in positions 6 and 8 respectively.

4.6.3 Third algorithm:

] 2 3 4 S 6 7 8 count  tally
1 8.00 900 5.00 1.00 -7.00 5
2 3.00 8.00 200 3
3 6.00 400 2
4 -3.00 500 -9.00 2.00 4
S 400 -7.00 3.00 3
6 -2.00 S.00 -1.00 3
7 5.00 -800 200 6.00 -4.00 S
8 5.00 200 3.00 3
count 2 S 3 S 3 3 3 4
tally
Matrix O

Iteration 1
Column 1 is selected and assigned positionp =9-2=17.
Rows 1 and 4 are selected and assigned positions 7 and 8.

Position 8 is sent to the SP queue.
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2 3 4 S 6 7 ] 8 count  tally
2 3.00 800 200 3
3 6.00 4.00 2
S 400 -7.00 3.00 3
6 -2.00 500 -1.00 3
7 S.00 -80C 200 60C -4.00 S
8 SQ00 200 3.00] 3
] 3.00 500 100 8.00 -7.00
4 5.00 -9.00 -3.00 200
count 3 2 3 3 3 3 2
tally
Matrix c1
Iteration 2
Row 3 is selected and assigned position 1.
Columns 4 and 5 are selected.
Column 4 is assigned position 1 and column 5 sent to the SI queue.
4 2 3 6 7 8 15 count  tally
3 6.00 4.00
2 3.00 8.00 2.00 3
S 3.00] 400 -700 2
6 5.00 -1.00 -2.00 2
7 5.00 200 600-4.00 -8.00 3
8 5.00__ 200 3.00 3
| .00 9.00 5.00 -7.00 8.00
4 -9.00 500 200 -3.00
count 3 2 3 3 2
tally S 6
Matrix c2

Iteration 3
Column 8 is selected and assigned position p =7 -2 = 5.
Rows 7 and 8 are selected and assigned positions 5 and 6.

Position 6 is sent to the SP queue.
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Iteration 4

Row 6 is selected and assigned position 2.

Columns 6 and 7 are selected.

4 2 3 6 8 7 ] S count
3 6.00 400
2 3.00 8.00 2.00 3
S 300l 400 -7.00 2
6 5.00 -1.00 -200 2
7 5.00 200 -400 6.00 -8.00
8 500 200 3.00
1 1.00 900 5.00 -7.00 8.00
4 -9.0C 5.00 2.00 -3.00
count 2 1 2 2
tally
Matrix ¢3

Column 6 is assigned position 2 and column 7 is added to the SI queue.

4
3 6.00
6
2
S 3.00
7 5.00
8
1 1.00
4 -9.00
count
tally

Iteration 5

3.00

8.00

2.00

2 3 8 5
400
-2.00
3.00
400 -7.00
-4.00-8.00
5.00 200 3.00
900 500 -7.00
5.00 2.00
2 |
Matrix c4

1 7 count
-1.00
200 1
2
6.00
8.00
-3.00

Column 3 is selected and assigned position p=5—-1=4.

Row 5 is selected and assigned position 4.

tally
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4 6 2 3 8 5 ) 7 count tally
3 6.00 400
6 5.00 -2.00 -1.00
2 8.00_3.00) 2.00 1
S 3.00 400 -7.00
7 5.00 200 -400-800 6.00
8 S.00 200 3.00
| 1.00 9.00 5.00 -7.00 8.00
4 -9.00 S.00 2.00 -3.00
count |
tally
Matrix c5

Iteration 6
Row 2 is selected and assigned position 3.

Column 2 is selected and assigned position 3.

4 6 2 3 8 5 1 7 count tally
3 6.00 400
6 5.00 -2.00 -1.00
2 800 300 2.00
S 3.00 400 -7.00
7 5.00 200 -4.00-800 6.00
8 S.00 200 3.00
] 1.00 900 5.00 -7.00 8.00
4 -9.00 5.00 2.00 -3.00
count
tally
Matrix -6

After 6 iterations, all rows and all columns have been deleted. By matching
the spike-index queue {5,7} with the spike-position queue {8,6} in reverse order,
we obtain the same final matrix as with the second algorithm. The two spikes,
columns 5 and 7, are in positions 6 and 8 respectively. In this particular example,
the third algorithm takes as few iterations as the first one and yields as few spikes

as the second one.
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CHAPTER 5. FACTORIZATION ALGORITHM

5.1 Introduction

The spike reduction algorithms described in Chapter 4 do not take into con-
sideration the numerical values of the nonzero coefficients of the matrix A. There-
fore, they are unlikely to produce a matrix whose direct factorization would be
stable. On the other hand, the factorization with column interchanges described
in Chapter 3 would result in too many spikes and too much computation if it were
applied to the original matrix A.

The algorithm described in this chapter attempts to create a sparse and stable
factorization by combining the ideas described in the previous three chapters. It
consists of three phases: prescaling, preordering and factorization.

The prescaling phase is a simple column scaling. The preordering phase is
based on the composite spike minimization algorithm of Section 4.5. The factor-
ization phase, which also includes some reordering and rescaling, is a restricted-
pivoting version of the factorization with column interchanges described in Section

3.6.

5.2 Notation
We use the definitions and notation of Section 4.2. In addition, we introduce

a pivot tolerance 7 and the following quantities:

N
ROWPIVOT() = max |Aix|

2

COLPIVOT(;) = max | Ax;j)

A . . : .
ROWSCORE(i) = {gOWPIVOT(l) X ROWTALLY(s) gt::rv‘:’l;;ZOT(l) >T

COLPIVOT(j) X COLTALLY(j) if COLPIVOT(j) > T

COLSCORE(j) 2 {0 otherwise

Thus, if a row ¢ satisfies ROWSCORE(i) = 0, it contains no entry that can be accepted

as a pivot.
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5.3 Prescaling Phase

To render meaningful any row or column selection based on the size of the
coefficients within a column or a row of A, these coefficients of A must have been
prescaled. Here, we assume a columnwise matrix representation and we choose to
scale the columns of A. For instance, we can divide each column by a coefficient
of largest absolute value in that column. The resulting columns are unit vectors

for the || . ||, norm.

5.4 Preordering Phase

The preordering is aimed at reducing the number and size of the spikes and,
hence, of the factors. It uses the composite spike reduction algorithm of Section

4.5 with three modifications.

The first modification concerns row or column selection. The selected rows
and columns that do not contain a suitable pivot (i.e. an entry whose absolute
value is greater than 7) are rejected. When a column has been selected and
several rows are available to be assigned the pivot position, the row containing
the entry of largest absolute value in that column inside the active submatrix is
chosen as pivot row, unless that entry remains too small to be used as a pivot in
which case the selected column becomes a spike. Similarly, when a row has been
selected and several columns are available to be assigned the pivot position, the
column containing the entry of largest absolute value in that row inside the active
submatrix is chosen as pivot column, unless that entry remains too small to be
used as a pivot in which case the pivot position is sent to the spike-position queue

and all the columns intersecting the selected row are sent to the spike-index queue.

The second modification concerns the tiebreaking function TALLY() that is
replaced by the “multiobjective” function SCORE() to take into account both the
pivot size and the number of nonzero entries to be deleted.

Finally, the third modification concerns the ordering of the spikes. Spikes are

still given in order of nonincreasing height, but their final order is to be determined
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in the factorization phase. Therefore, spike-indices and spike-positions are only

added to, but not removed from their respective queues.

5.5 Factorization Phase

The preordering phase induces a partition of the columns into spikes and
non-spikes. The factorization phase preserves the ordering of the rows and that
of the non-spikes but permutes the spikes according to the pivot-maximizing rule

introduced in Section 3.6.

For all spike-positions k in increasing order (i.e. from left to right), it com-
putes a vector & and the potential pivots associated with the available spikes,
selects a pivot of largest absolute value and matches the corresponding spike-index
with the spike-position k. If no suitable pivot can be obtained from the spike-index

queue, the matrix is deemed singular and the algorithm stops.

In addition, each time a spike has been assigned a position, it may be rescaled
so that the resulting pivot takes the value 1. This step is not recommended for

dense matrices (cf. Section 3.7).

5.6 Factorization Algorithm

All the procedures mentioned above, including the column rescaling, are con-

tained in the following algorithm:
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Normalize the columns of A.

Let k=m+ 1.
Let pr =m + 1.
Let k' = 0.
Repeat
If not all columns are deleted then
Let k=k—1;
BOTTOMRIGHT(k).

I not all rows are deleted then
Let ' = k' +1;
TOPLEFT(k').
until all rows are deleted.
Add undeleted columns to the spike-index queue.

MATCHQUEUES.

The procedure BOTTOMRIGHT(k) becomes:
o Select from the active submatrix a column j; minimizing COLCOUNT(;); break
eventual tie by maximizing COLSCORE(;).
e Update the rightmost non-spike position py = pg4+1 — COLCOUNT(j).
o If coLsCoRE() # 0, then
assign column j; position pg;
select a pivot row from the rows intersecting column jj;
assign the pivot row position p;
assign the other rows intersecting column j; the positions in the range
pr+1,...,pk41 — 1
add the positions px + 1...pg4+1 — 1 to the spike-position queue;
rescale the pivot column so that the resulting pivot equals 1.
o If cCOLSCORE(,) =0, then
add column j; to the spike-index queue.

o Delete column ji and the rows intersecting column jy.
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The procedure TOPLEFT(k) becomes:

Select from the active submatrix a row #x minimizing ROWCOUNT(i) ; break
eventual tie by maximizing ROWSCORE().

e Assign row #; position k.

If ROWSCORE(ix) # 0, then
select a pivot column j; from the columns intersecting row i;
assign column j; position k;

add the other columns intersecting row :; to the spike-index queue.

If ROWSCORE(i:) = 0 then
add position k to spike-position queue;

add all columns intersecting row i to spike-index queue.

Delete row i3 and the columns intersecting row ;.

The procedure MATCHQUEUES stands for:

While spike-position queue # 0,
remove leftmost position k from spike-position queue;
compute O;
compute the potential pivots associated with the columns of the spike-
index queue;
select pivot B and pivot-maximizing coluran I;
if |Bx| < ¢, then STOP (A is singular);
assign | position k and remove [ from spike-index queue;

rescale the pivot column so that the resulting pivot equals 1.

5.7 Example:

In this Section, we apply the sparse factorization algorithm described above
to the 8 x 8 matrix introduced in chapter 4. The pivot tolerance r is set to 0.50.

The numerical values of the matrix and of its factors are given with a precision of
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10~2. Phases 1, 2 and 3 correspond to prescaling, preordering and factorization

with restricted pivoting respectively. SI queue and SP queue denote the spike-

index queue and the spike-position queue respectively. The columns belonging to

the SI queue are printed in italic.

1 2 3 4 S 6 7 8

1 800 900 5.00 1.00 -7.00

2 3.00 8.00 200

3 6.00 4.00

4 -3.00 5.00 -9.00 2.00

S 400 -7.00 3.00

6 -2.00 500 -1.00

7 500 -800 200 6.00 -400

8 5.00 200 3.00
count 2 S 3 5 3 3 3 4
score
scale 1 00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Matrix 0
Phase 1
The columns of the matrix are prescaled.
1 2 3 4 ) 6 7 8

1 1.00 1.00 -0.71 -0.11 1.00

2 0.33 1.00 0.33

3 -0.67 -050

4 -0.38 056 1.00 -0.29

5 0.44 1.00 -0.33

6 0.2% 063 -0.17

7 -0.56 1.00 0.25 1.06 057

8 0.56 -0.29 -0.43
count 2 S 3 S 3 3 3 4
score
scale 800 900 -7.00 -9.00 -800 800 6.00 -7.00

Matrix 1d
Phase 2 BOTTOMRIGHT]

Column 1 is selected and assigned position p=9-2=7.
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Rows 1 (pivot row) and 4 are selected and assigned positions 7 and 8.

Position 8 is sent to the SP queue.

2 3 4 S 6 7 | 8
2 0.33 1.00 033
3 -0.67-0.50
5 0.44 1.00 -0.33
6 0.25 0.63 -0.17
7 -0.56 1.00 025 1.00 0.57
8 056 -029 -0.43
| 1.00 -0.71 -O.11 t.00 1.00
4 0.56 1.00 -0.38 -0.29
count 3 1 3 3 3 3 2
score
scale 9.0¢C -7.00 -9.00 -800 800 600 8.00 -7.00
Matrix 2d
Phase 2 TOPLEFTI
Row 3 is selected and assigned position 1.
Columns 4 and 5 are selected.
Column 4 (pivot column) is assigned position 1.
Column 5 is sent to the SI queue.
Column 4 is rescaled so that the pivot equals 1.
4 2 3 6 7 8 1 S
3 1.00 -0.50
2 0.33 1.00 033
) 0.50} 0.44 1,00
6 063 -0.17 0.25
7 0.83 0.25 100 0.57 1.00
8 0.56 -0.29 -0.43
i 0.17 1.00 -0.71 1.00 1.00
4 -1.50 056 -0.29 -0.38
count 3 2 3 3 2
score 5.00 3.43
scale 600 900 -700 800 600 -7.00 800 -8.00
Matrix 3d
Phase 2 BOTTOMRIGHT2
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Column 3 is selected and assigned position p = 7 ~2 = 3.
Rows 5 (pivot row) and 8 are selected and assigned positions 5 and 6.

Position 6 is sent to the SP ueue.

4 2 6 7 3 8 1 5 count

3 1.00 -0.50
2 0.33 1.00 0.33 3
6 0.63-0.17 0.25 2
7 0.83 0.25 1.00 0.57 1.00 3
S 0.50 0.44 1.00
8 0.56 -0.29 -0.43
1 0.17 1.00 -0.71 1.00 1.00
4 -1.50 0.56 -0.29 -0.38

count | 3 3 1

score

scale 6.00 900 800 600 -7.00 -7.00 8.00 -800

Matrix 4d

Phase 2 TOPLEFT2
Row 6 is selected and assigned position 2.
Columns 6 and 7 are selected.
Column 6 (pivot column) is assignec position 2.
Column 7 is sent to the SI queue.

Column 6 is rescaled so that the pivot equals 1.

4 6 2 8 3 7 1 ) count

3 1.00 -0.50

6 1.00 -0.17 0.25

2 1.60f 0.33 0.33 |
7 0.83 0.40 0.57 1.00 1.00 1
S 0.50 0.44 1.00

8 0.56 -0.43 -0.29

1 017 1.00 1.00 -0.71 1.00

4 -1.50 0.56 -0.29 -0.38
count 1 1
score 033 0.97

scale 600 S00 900 -7.00 -7.00 6.00 8.00 -8.00

Matrix 5d
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Phase 2 BOTTOMRIGHT3
Column 8 is selected and assigned position p =5 -1 = 4.
Row 7 (pivot row) is selected and assigned position 5.

Column 8 is rescaled so that the pivot equals 1.

4 6 2 8 3 7 | 5 count score

3 1.00 -0.50

6 1.00 -0.17 025

2 1.60_033 033 I 0
7 0.83 0.40 1.00 100 1.00

5 0.50 0.44 1.00

8 0.56 -0.75 -0.29

I 0.17 1.00  1.75 -0.71 1.00

4 -1.50 0.56 -0.50 -0.38
count |
score

scale 600 5.00 9.00 -4.00 -7.00 600 8.00 -8.00

Matrix 6d

Phase 2 TOPLEFT3
Row 2 is selected and rejected because [0.33]| < 7.
Position 3 is sent to the SP queue.

Column 2 is sent to the SI queue.

Phase 3 Computation of 73
We remove the leftmost position, namely 3, from the spike-position queue. Then

we have to solve the system w3A; = ug', or rather

1.00
. A 1.00 =(0 0 1).
1.60 1.00

The solution, &; = (0.00 —1.60 1.00), can be used to compute the pivots that
would result from assigning columns 2, 7 and 5 position 3
—0.50

(0.00 -1.60 1.00) ~0.17 025 | = (0.33 0.60 —0.40).
0.33 0.33
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Selecting column 7 yields the pivot of largest absolute value. Therefore, we remove
column 7 from the spike-index queue and assigned it position 3. Then we rescale

column 7 by 0.60 so that the resulting pivot equals 1.

4 6 7 8 3 2 | 5
3 1.00 -0.50
6 100 -0.28 025
2 1.60 056 033
7 0.83 0.40 1.67 1.00 1.00
5 050 1.00 044
8 -0.75 -0.29 056
| 017 1.79 -0.71 1.00 1.00
4 -1.50 -0.50 0.56 -0.38
scale 600 500 360 -400 -7.00 900 8.00 -8.00
cmega 0.00 -1.60 1.00
beta 060 033 0.40
Matrix 7d

Phase 3 Computation of &g
We remove the leftmost position, 6, from the spike-position queue. Then we have

to solve the system wsE3A; = u3T, or rather

1.00
1.00 —0.28
_ 1.60 0.56 ~
5| 083 040 167 1.00 =(0 0 0 0 0 1).
0.50 1.00

-0.75 -0.29 1.00
The solution, @¢ = (—-0.77 1.83 -1.33 0.75 0.29 1.00), can be used to

compute the pivots that would result from assigning columns 5 and 2 position 6:

~0.50
0.25
0.33
(-0.77 1.83 -133 075 029 1.00)| , o =(1.59 0.24).
0.44
0.56

Column 5 provides the pivot of largest absolute value. Therefore, we remove

column 5 from spike-index queue and assign it position 6. Then we rescale it by
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1.59 so that the resulting pivot equals 1.

4 6 7 8 3 S | 2
3 1.00 -0.31
6 1.00 -0.28 0.16
2 1.60 056 033
7 0.83 040 167 100 0.63
S 0.50 1.00 0 44
8 -0.75 -0.29 0.56
| 0.17 1.79 -0.71% 1.00 1.00
4 -1.50 -0.50 -0.38 056
scale 6.00 S.0C 360 -400 -7.00 -127 800 900
omega -0.77 183 -1.33 075 0©0.29 1.00
beta 1.59 024
Matrix 8d
Phase 3 Computation of 7

We match the remaining spike-index 2 and spike-position 8. However, we must

still solve wsEgE; A; = u;r

( 1.00
1.00 -0.28
1.60 0.56
. 0.83 040 1.67 1.00
0.50
-0.75
0.17 1.75
\ —1.50 ~0.50
=(0 0 0O
The solution is 3 = (0.97 0.73

or equivalently

—0.31
0.16 )
0.63
1.00
—0.29
—0.71 1.00
—0.38 1.00/
00 0 1).

-0.53 030 044 0.61 0.38 1.00)

and the pivot resulting from placing column 2 in position 8 is given by

(0.97 0.73
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Therefore, we rescale column 2 by 1.29 so that the pivot equals 1.

4 6 7 8 3 5 | 2

3 1.00 -0.31

6 1.00 -0.28 0.16

2 1.60 0°%¢ c.2¢C

7 0.83 0.40 1.67 1.00 0.63

5 0.50 1.00 0.35

8 -0.75 -0.29 0.43

| .17 1.795 -0.71 1.00 0.78

4 -1.90 -0.50 -0.38 0.43
scaie 6.00 S00 360 -400 -700 -12.7 8.00 1158
omega 0.97 073 -0.53 0.30 0.44 061 0.38 1.00
beta 1.29

Matrix 9d

The final matrix has three spikes, namely columns 7, 5 and 2, in positions 3,

6 and 8 respectively. Its factorization is given by the three vectors
o3 =(0.00 -1.60 1.00)
o¢=(—-0.77 183 -1.33 0.75 0.29 1.00)
T3 =(097 073 -053 0.30 0.44 0.61 0.38 1.00).

5.8 Block Triangular Reduction

Dulmage and Mendelsohn (1963) have indicated a procedure to permute the
rows and the columns of a matrix so that the resulting matrix is lower triangular
by blocks.

First, find a transversal, i.e. a permutation of the columns with matrix rep-

resentation Q such that the diagonal of the resulting matrix AQ has no zero

entry.

Then identify the resulting matrix AQ with its canonically associated directed
graph (the nodes are the indices {1,...,m} and the arcs are the pairs (z,5) such
that A, ; # 0).
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Finally determine the strongly connected components of the graph (cf. Tarjan,
1972), regroup the nodes of the same components into supernodes and consider
the resulting collapsed graph: since it does not contain any cycle, the supernodes
can be reordered so that if arc I — J exists then I > J. List the nodes from the
first supernode, then those from the second one, and so on that list defines a row
permutation matrix P. The matrix PAQPT is lower triangular by blocks.

Once the blocks have been identified, they can be reordered so as to minimize
the number of spikes within the block and systems can be solved block by block.
This reduces the size of the blocks to be reordered and the length of the auxiliary

vectors Wi or Ok.

Example:
X X X X
X X x|x X X XX
X X X]x X X XIx
X XX X XX XX
X X X X X X X X X X[x X
XXX XXX X| X XX X X{x x x| x
XXX XX XXX| X XX X X{x x x x| x
X XX XXXXX X XX XXX XX X] X
XXX XXX XX XX XX X X[X XX X XX
XXX XXXXXXX XX XXX XXX XX

On the 10 x 10 matrix shown above, factorizing the diagonal blocks instead
of the whole matrix reduces the number of nonzero components for the auxiliary

vectors Wi or & from 25 to 17.
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CHAPTER 6. APPLICATION TO THE SIMPLEX ALGORITHM

6.1 Introduction

In order to test our factorization method, we have implemented it within the
framework of the simplex algorithm for linear programming (Dantzig, 1963). As
a reference code, we have chosen the FORTRAN optimization code MINOS 5.3
(Murtagh and Saunders, 1987) whose modularity, robustness and performance on
large-scale problems make it an ideal benchmark.

in MINOS 5.3, the factorization of the basis, the update of the basis and the
solution of linear systems involving the basis are carried out by a set of FORTRAN
subroutines constituting the file MI25BFAC. We have written a file of FORTRAN
subroutines, called MI26BFAC, designed to perform the same tasks using our
method. We have run MINOS 5.3 alternatively with the original file MI25BFAC
and with the new file MI26BFAC on different test-problems under different options.

6.2 The File MI26BFAC

The file MI26BFAC is designed to perform the same tasks as MI25BFAC
when used within MINOS 5.3 to solve linear programming problems. The major
implementation differences are the following. First, our factorization is inherently
different from the LU factorization. Second, we compute a block-triangularization
of the basis and then perform the factorization only on the diagonal blocks. Third,
we use a conventional product-form update (with an in-core “p-file”).

The principal subroutines of MI26BFAC, written in FORTRANT77, are repre-
sented hierarchically in Chart 6.2. Their names and their roles are listed below:
M2BFAC: Performs the factorization of the basic matrix B by calling M2BELM,

M2BMAP, M2BSOL and M2SING.
M2BELM: Extracts a sequence of triplets representing the matrix B from the data.
POINTR: Converts the representation of B from a sequence of triplets to sparse

column format with an array of coefficient values, an array of row indices
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M2BMAP:

M2BSOL:

M2SIKG:

TRIANG:

TRTBLK:

SOLVEM:
SOLVEN:
PERMCP:
UPDATE:
ADDETA:
TRANSV:
GETBLK:
EXTRCT:
SELECT:

RESCAL:
PREORD:

and an array of column pointers.

Allocates storage for most of the arrays used in the factorization and
updating of B.

Performs one of the following actions according to the value of the pa-
rameter “mode”:

factorize B by calling POINTR, TRIANG and TRTBLK;

solve BH; .. H,Px = b by calling SOLVEM, PERMCP and UPDATE;

solve *BH, ...H, = 4P~} by calling SOLVEN, PERMCP and UPDATE;
add an element H, to the 5-file by calling ADDETA.

Replaces one column of B by an appropriate slack column when the
original matrix results in too small a pivot during factorization. It may

be called several times in a row.

Identifies the lower block triangular representation of B by calling TRANSV
and GETBLK.

Extracts, prescales, preorders and factorizes each diagonal block of B by

calling EXTRCT, RESCAL, PREORD and FACTOR.

Solves Bx = b with the help of SOLVEA.

Solves B = 4 with the help of SOLVEB.

Permutes a vector according to P or P!,

Performs rank-one updates according to the n-file.

Adds a column-vector characterizing a factor H, to the n-file.
Computes a transversal of B.

Computes the diagonal blocks of B.

1. .cntifies the elements from a diagonal block of B with the help of SELECT.

Scans the columns that support a diagonal block to identify the entries
that belong to that block.

Normalizes the columns of each block.

Applies a spike reduction algorithm to preorder the blocks by calling
SETLST, COLCAN, BOTRIG, ROWCAN, TOPLEF, PRUNE and GATHER.
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Structure of MI26BFAC
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FACTOR: Factorizes the blocks by calling SOLVEB and ADDSPK. Sorts the column

representation of B according to the final row order.

SETLST: Sets up a row-wise linked list representing a diagonal block and some

auxiliary variables for preordering.
COLCAN: Finds column candidates to be used by BOTRIG.
BOTRIG: Performs a BottomRight iteration.
ROWCAN: Finds row candidates to be used by TOPLEF.
TOPLEF: Performs a TopLeft iteration.
PRUNE : Performs the deletion of entries in row-wise linked lists.
GATHER: Gathers and orders all spikes in order of non-increasing height.
SOLVEA: Solves B'x’' = b’ where B’ is a sub-block of B.
SOLVEB: Solves ®'B’ = 4’ where B’ is a sub-block of B.

ADDSPK: Adds one auxiliary vector & to the factor list.

6.3 Test Implementation

We have run MINOS 5.3 on a SUN 3/50 workstation using a 16 Mhz Motorola
68020 CPU under the SunQS 3.5 operating system and with the Berkeley {77

compiler.

We have chosen a set of 53 test-problems studied by Lustig (1987) and made
publicly available on netlib (Dongarra and Grosse, 1987) by Gay (1985). Although
the original MINOS code could run all these test-problems without modification,
our implementation required too much storage. Therefore, we have increased
the size of the array 2 from 100000 to 120000 for SHIP12L and to 150000 for
PILOTJA and decided to forego the last two problems 80BAU3B and PILOT
because it was apparent from running the other test-problems that our method

would be unpractical and widely outperformed by MINOS.

With each of the 51 other test-problems, we have made two experiments, each

based on a different MINOS option file.
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6.4 First Experiment

The first experiment is the straightforward solve of each linear program from

scratch in order to compare overall performance. The option file is the following:

ROWS 1500
COLUMNS 5500
ELEMENTS 22000
MPS FILE 10
NEW BASIS FILE 12
SAVE FREQUENCY 10000
ITERATION LIMIT 20000
PRINT LEVEL 0
SOLUTION NO
SCALE OPTION 2
PARTIAL PRICE 10
FACTOR FREQUENCY 25

LU FACTOR TOLERANCE 100.0
LU UPDATE TOLERANCE 10.0

In Table 6.4.1, we have listed for each test-problem the number of iterations
l, in phase 1, the total number of iterations k, and the execution time ¢, under
both versions (v = 0 for MI25BFAC and v = 1 for MI26BFAC), as well as the
ratio of execution times t;/¢o. In 19 cases, our implementation runs faster than

MINOS, which is hampered by the factorization frequency of 25.

In Table 6.4.2, we have listed for each test-problem the optimal objective
value z, under both versions (v = 0 for MI25BFAC and v = 1 for MI26BFAC),
as well as their relative difference. In 44 instances, the optimal objective values
agree up to 11 significant digits. The largest discrepancy occurs with PILOTWE
where the agreement is still of 6 significant digits. This seems to indicate that our

method achieves a satisfactory numerical stability.
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ABLE 6.4.1 11 T k0 {1 t0__[11/10
AFIRO 3 3 7 7 1.94 1.84] _1.05
ADUTTLE 23 23 117 117 8.00 7.18] _1.11
SC205 0 0] 145 145 35.58] 17.84] 1.99]
SCAGR7 79] 79 99 99 11.50] 10.14] 1.13
SHARE2B 67, 67, 110 110 10.52 9.48] 1.11
RECIPE 7 7] 33 33 5.88 6.30] 0.93
VIPBASE 33 33 48 48 10.10 9.72] 1.04
SHARE1B 135 135 261 261 27.86] 23.56] 1.18
BORE3D 114 114 160 160 27.38 25.46] 1.08
SCORPION 63 63 102 102 23.40] 24.88] 0.94
CAPRI 164] 164] 251 251 41.32 37.72[ 1.10
SCAGR25 169 172 353 376 81.88] 86.00] 0.95
SCTAP1 195| 195 287| 287 46.78] _47.72] 0.98
BRANDY 269] 269 423 423 80.42] 65.66] 1.22
ISRAEL 44 44| 250 250 49.28]  37.18] 1.33
ETAMACRO 313 302 649 574 129.30] 109.30] 1.18
SCFXM1 222 222 389 389 70.54] 68.98] 1.02
GROW? 0 0| 232 232 54.86] 49.82 1.10
BANDM 225 225 498 498 114.10] 101.06] 1.13
E226 111] _111] 480 467 81.60] 67.76 1.20
STANDATA 40 40 114 111 31.00] 31.10] 1.00
SCSD1 92 92 368 370 40.88'  17.68| 1.08
GFRDPNC 291] 283 615 637 143.02) ‘ .7.26| 0.86
BEACONFD 39 39 104 87 25.62] 22.82[ 1.12
STAR 334] 334 449 449 385.68 197.58] 1.95
SCRSS 63 63 692 645  176.42 161.68 1.09
SEBA 225 225 399 399 112.00] 106.14] 1.06
SHELL 60 60 274 274 73.26] _82.02 0.89)
PILOT4 445 445 1599 1467| 1278.24] 550.82] 2.32
SCFXM2 538] 538 819] 819 259.50] 270.40| 0.96
SCSD6 206] 206| 1139 1139 172.96] 148.24] 1.17
GROW15 0 o 485 485 226.32 196.24] 1.15
SHIP04S 13 13 158 159 47.12] 54.42] 0.87
FFFFF800 883] 806 1074 1002] 292.22] 284.08] 1.03
GANGES 412 410 700/ 705 333.02] 354.66] 0.94
SCAXM3 828] 854] 1349 1391] 577.54] 660.18 0.87
SCTAP2 362 373 766 744] 319.02] 346.84 0.92
GROW22 0 o[ 736 662 571.92] 369.46] 1.55
SHIPO4L 13 13 275 276 77.60] 88.86] 0.87
PILOTWE 380 492 4474 4040 7900.80 1938.60| 4.08
SIERRA 470] 452 1083 1071] 438.18] 511.84] 0.86
SHIP08S 17] 17| 262 262 106.68 130.24] 0.82
SCTAP3 492 425 926| 883] 488.96] 546.74] 0.89
SHIP12S 39] 39 434 434] 196.14] 273.56] 0.72
25FV47 2046| 2304 7821 7828] 10704.38] 4524.18] 2.37
SCSD8 767 711 3102 3914 1383.04] 1245.60] 1.11
NESM 1176] 1251] 3270 3399 1357.34[ 1189.00[ 1.14
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TABLE 6.4.2 z1 20 21-20/20

AFIRO -4.64753142860+02] -4.64753142860+02] 0.00e+00]
ADLITTLE 2.25494963160+05] 2.25494963160+05 0.00e+00|
SC205 -5.22020612120+01] -5.2202061212e+01] 0.00e+00]
SCAGR7 -2.33138925486+06 -2.3313892548e+06] 0.000+00
SHARE2S -4.15732240740+02 -4.15732240740+02] 0.000+00|
RECIPE -2.66616000000+02 -2.66616000000+02] 0.000+00
VTPBASE 1.29831462460+05] 1.29831462460+05 0.00e+00
SHARE1B -7.6589318579e+04] -7.6589318579e+04] 0.000+00
BORE3D 1.37308039420+03] 1.3730803942e+03| 0.000+00
SCORPION 1.87812482270+03] 1.8781248227e+03[ 0.000+00
CAPRI 2.69001291386+03] 2.6900129138e+03] 0.00e+00
SCAGR2S -1.47534330610+07] -1.4753433061e+07] 0.00e+00
SCTAP1 1.41225000000+03[ 1.41225000000+03| 0.000+00
BRANDY 1.51850989656+03] 1.51850989650+03] 0.008+00
ISRAEL -8.96644821860+05| -8.96644821866+05] 0.00e+00
ETAMACRO -7.55715218190+02| -7.5571521831e+02] -1.596-10
SCFXM1 1.84167590280+04] 1.8416759028e0+04] 0.000+00
GROW7 -4.77878118150+07] -4.7787811815e+07] 0.000+00
BANDM -1.58628018450+02] -1.5862801845e+02] 0.00e+00,
E226 -1.8751929066e+01] -1.8751929066e+01] 0.006+00
STANDATA 1.25769950000+03] 1.25769950000+03] 0.006+00
SCSD1 8.66666667430+00| 8.6666666743e+00] 0.000+00
GFRDPNC 6.90223599956+06] 6.9022359995e+06] 0.008+00
BEACONFD 3.3592485807e+04] 3.35902485807e+04] 0.006+00
STAR -2.51266951190+02] -2.5126695119e+02] 0.006+00
SCRS8 9.04299986196+02] 9.0429998619e+02| 0.00e+00|
SEBA 1.5711600000e+04] 1.5711600000e+04] 0.00e+00|
[SHELL 1.20882534600+09] 1.20882534600+09] 0.000+00|
PILOT4 -2.58113926410+03] -2.58113926416+03[ 0.00e+00]
SCFXM2 3.66602615650+04] 3.66602615656+04{ 0.00e+00|
SCSD6 5.0500000078e6+01] 5.0500000078e+01] 0.00e+00|
GROW15 -1.06870941290+08| -1.06870941296+08] 0.00e+00]
SHIP04S 1.79871470040+06] 1.79871470040+06] 0.000+00
FFFFF800 5.55679612190+05] 5.5567959103e+05 3.81e-08
GANGES -1.09586347700+05| -1.0958635225e+05 -4.15e-08
SCFXM3 5.49012545500+04] 5.49012545500+04] 0.000+00
|SCTAP2 1.72480714290+03] 1.7248071429e+03] 0.000+00
GROW22 1.6083433648e+08] 1.6083433648e+08] 0.00e+00
SHIPO4L 1.79332453800+06{ 1.79332453806+06] 0.00e+00
| PILOTWE -2.72009911960+06] -2.72010345250+06] -1.59e-06
SIERRA 1.53943621840+07 1.53943621840+07| 0.000+00}
SHIP08S 1.92009821056+06] 1.92009821056+06] 0.00e+00|
SCTAP3 1.42400000000+03] 1.42400000008+03] 0.00e+00
SHIP12S 1.48923613440+06] 1.48923613440+06] 0.000+00
25FVa7 5.5018467791e+03] 5.5018458883e+03| 1.626-07
SCSD8 9.04999999936+02] 9.0499999993e+02| 0.00e+00}
[NESM 1.40760733240+07] 1.40760751286+07] -1.28e-07
CZPROB 2.1851966989e+06] 2.1851966989e+06] 0.006+00
PILOTJA -6.113115294860+03] -6.11311577750+03| -7.906-08
SHIPOSL 1.90905521140+06/ 1.90905521140+06{ 0.000+00
SHIP12L 1.47018791936+06{ 1.4701879193e+08] 0.000+00j
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6.5 Second Experiment

The second experiment is designed to focus on the factorization size. As initial
basis, we use the optimal basis obtained during the first experiment under MINOS
with MI25BFAC. The objective function is now maximized instead of minimized

and the iteration limit is set to 25. The option file is the following:

ROWS 1500
COLUMNS 5500
ELEMENTS 22000
MAXIMIZE

MPS FILE 10
OLD BASIS FILE 12
NEW BASIS FILE 0
SAVE FREQUENCY 10000
ITERATION LIMIT 25
PRINT LEVEL 1
SOLUTION NO
SCALE OPTION 2
PARTIAL PRICE 10
FACTOR FREQUENCY 100

LU FACTOR TOLERANCE 100.0
LU UPDATE TOLERANCE 10.0

Not surprisingly, some of the test-runs end with an unbounded solution. In
four other instances, MINOS lists some variables as apt to increase indefinitely.
These occurences are indicated respectively by a U and an I in the first column of
Table 6.5.1.

Table 6.5.1 also contains the number of iterations & up to which both methods
yield the same basic solution, and the total number of iterations k’. For each test-
problem, that number, usually the iteration limit of 25, turns out to be the same
under both versions.

Finally, Table 6.5.1 provides the size @ of the largest diagonal block, the
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TABLE 6.5.1 | k | k' [ 2 | f1 | fo [ft/f0] 1 to_Jti/t0
AFRO 8] 8] 4] o0.04 004 1.00] 1.70 1.98 o0.86
ADLITTLE 25| 25 13| 0.06] 0.14] 0.43] 4.32] 4.22] 1.02
SC205 20| 25{184] 0.78] 0.62] 1.26] 11.06] 7.38] 1.50
SCAGR? 25| 25| o]l 0.04] 0.18] 0.22] 5.72 5.50] 1.04
SHARE2B 25| 25 10| 0.10 0.24] 0.42] 570 5.34] 1.07
RECIPE 14 25 0| 0.020.18] 0.11] s5.40 6.32] 0.85
VTPBASE Ul 22| 22| 31] o0.10 0.36] 0.28] 7.88] 7.84] 1.01
SHARE 1B 25| 25 10| 0.10 0.34 0.29] 7.62] 7.50 1.02
BORE3D Ul 24] 24| 44 0.22] 0.54] 0.41] 11.52[ 11.26] 1.02
SOCORPION 25| 25 14/ 0.32 1.00] 0.32] 12.28] 12.96] 0.95
CAPRI 25 25 44| 0.24] 0.70] 0.34] 13.22[ 11.90] 1.11
SCAGR2S 25/ 25 54| 0.28 092 0.30] 16.14] 15.30] 1.05
SCTAP1 25| 25| 6| 0.14 0.50 0.28] 13.28] 12.86] 1.03
BRANDY 25| 25 90| 0.60] 0.90] 0.67] 14.52[ 13.12] 1.11
ISRAEL U__o| o] 54 0.22 060 0.37 8.94 9.24 0.97
ETAMACRO 25| 25 50 0.28/ 0.92] 0.30] 17.52] 17.50[ 1.00
SCFXM1 25| 25/ 13| 0.24] 0.80] 0.30] 15.60[ 15.42] 1.01
GROW? 25/ 25115/ 1.40] 1.46] 0.96] 18.04] 15.44] 1.17
BANDM 25| 25 83| 0.58] 1.22] 0.48] 17.34] 16.80] 1.06
E226 25| 25| 62| 0.28 0.72] 0.39] 14.28] 13.20] 1.08
STANDATA__|U| o] o] 2{ 0.12[ 0.46] 0.26] 17.16] 17.28] 0.99
SCSD1 25 25 14| 0.08 0.22] 0.36] 15.00] 14.66] 1.02
GFRDPNC 25| 25 0] 0.12] 1.04 0.12] 25.66] 26.40] 0.97
BEACONFD _ |U| 1| 1| 2| o0.08 0.38] 0.21] 12.06] 12.06] 1.00
STAR 25| 25/324] 12.36] 4.50] 2.75{ 47.60] 27.48] 1.73
SCRS8 25| 25| 23] 0.34] 1.02] 0.33] 23.74] 23.78] 1.00
SEBA 25| 25 0| 0.14) 1.26] 0.11] 27.54] 27.06] 1.02
SHELL 1| 25 25 ol o0.26] 0.90 0.29] 30.00[ 30.28] 0.99
PILOT4 25| 25(279] 9.42] 1.95] 4.83] 49.58] 32.92] 1.51
SCFXM2 25| 25| 25 0.58] 1.80] 0.32] 32.10] 33.08] 0.97
SCSD6 24| 25 30| 0.18] 0.42] 0.43] 25.00] 25.18] 0.99
GROW15 25| 25| 79[ 2.10] 3.90] 0.54] 32.44] 33.16] 0.98
SHIP04S 1| 25 25 4] o.16] 1.10] 0.15( 2552 26.68] 0.96
FFFFF800 25| 25| 27] 0.32] 1.24] 0.26] 32.04] 31.28] 1.02
GANGES 24| 25 32| 0.98] 3.72] 0.26] 45.10] 44.70] 1.01
SCFXM3 25| 25| 25| 0.86] 2.92] 0.29] 45.58] 47.38] 0.96
SCTAP2 o] 25| 5| 0.38] 2.02] 0.19] 45.04] 46.96] 0.96
GROW22 ol 25{119] 4.08] 6.02 0.68] 47.18] 45.82[ 1.03
SHIPO4L 1| 25| 25| o] o0.18 0.68 0.26] 33.50] 35.88 0.93
[PILOTWE 25 25519 15.70, 4.3] 3.65| 87.64] 58.70 1.49
| SIERRA 25| 25 o] 0.22] 2.02] 0.11] 61.34] 62.80] 0.98
SHIP08S Ul 18] 18] 8] 0.24] 2.26] 0.11] 40.44] 42.90] 0.94
SCTAP3 1| 2] 25| 12| 0.40 2.94 0.14] 58.28] 59.80] 0.97
SHIP12S Ul 1| 1] s o0.36] 3.76] o0.10] 42.14] 45.92] 0.92
25FV47 25| 25/365] 6.82] 4.44] 1.54] 73.02] 54.72] 1.33
SCsD8 23| 25209 1.14] 1.52] 0.75| 52.32[ 51.30] 1.02
NESM 25| 25179 1.08 1.88] 0.57] 75.24] 73.22] 1.03
CZPROB 25 25| 6| o0.30 3.56]| 0.08] 63.02] 66.50] 0.85
PILOTJA 25| 25/544] 25.86) 5.96] 4.34] 120.98] 70.98] 1.70
SHIPOSL 25| 25| 8| o0.24] 2.42] 0.10] 66.36] 68.80] 0.96
SHIP12L U[_1[ 25 s[ 0.30 3.56[ 0.08] 72.54] 76.08[ 0.95

75




TABLE 6.5.2 a w A+w JAewex| | u | 1+u |I'+u'[s1/s0[s'1/s'0
AFRO 72 3 74 150 23] 51 74 95 1.00{ 1.58
ADLITTLE 251 31 261 1029 103f 162 265 466 0.98) 2.21
$C205 543 991) 1493 4837 296] 514 810/1045] 1.84, 4.63
SCAGR?7 477 0 477] 1787 0] 477] 477] 826| 1.00 2.16
SHARE2B 522 52 529 1509 116] 444] 560 707] 0.94] 2.13
RECIPE 271 0 271 375 0| 271] 271 266[ 1.00 1.41
VTPBASE 637 49] 673 1896 96] 546 642 606/ 1.05 3.13
SHARE1B 586 72| 599 2060] 223| 424 647 846 0.93 2.43
BORE3D 1053 67 1084 2505 270, 818/1088/1505] 1.00, 1.686
SOORPION 1680 248| 1750 2864 369/1383{1752/2160, 1.00) 1.33
CAPRI 1193 127] 1291 3562 250 992(1242/1234] 1.04/ 2.89
SCAGR25 1644 72 1706{ 5512 192/1497(168912240( 1.01] 2.46
SCTAP1 950 18] 954 1876/ 200/ 752 95211113} 1.00f 1.69
BRANDY 1320, 896] 2057 4577 691 844/1535/1949 1.34] 2.35
lmL . - * 1 4 * » L - - .

ETAMACRO 1321 135/ 1433] 4153 253/1149/1402|1571 1.02| 2.64
SCFXM1 1321 66] 1347 3148] 302/1065/1367{1594] 0.99] 1.97
GROW7 1751 1983| 3089 6080 1025(1200{2225/{3010] 1.39] 2.02
BANDM 1897 631] 2527 6624 874{1364/2238/2846 1.13] 2.33
E226 1313 292 1540] 3424 551) 883/1434[1662 1.07] 2.06
s‘rmmTA - - - - - L - L ] - -«

SCSDt 289 321 306/ 1389 108] 229] 337 639 0.91 2.17
GFRDPNC 1815 0] 1815 2714 0/1815{1815/2112] 1.00, 1.29
BEACONFD 1275 1] 1278 * 2]1273]1275] * 1.00] ~

STAIR 3588/10960{13539]21917] 2467/12896{5363]/7436] 2.52| 2.95
SCRS8 1536 73] 1578 4974 214/1409/1623/2040] 0.97] 2.44
SEBA 2790 0] 2790 4433 0]2790/2790/3014]| 1.00f 1.47
SHELL 14983 0] 1493 1894 0/1493/1493/1636] 1.00] 1.16
PILOT4 3298 1032(12480,20107] 1941/2395/4336/5518] 2.88{ 3.64
SCFXM2 2698 173] 2792 3554/ 677{2131/2808/3109 0.99] 1.14
SCSDé 532 75| 588| 2080 163[ 454 6174 910 0.95 2.29
GROW15 4216| 2742 5237 7173 2421{2837{5258(6137, 1.00{ 1.17
SHIP04S 1411 2] 1412 1697 320{1093/1413/1493] 1.000 1.14
FFFFF800 2708 32 2725 4287 376/2340{2716/2895( 1.00] 1.48
GANGES 5614 395/ 5662 8583] 672/ 4965/5637/5636] 1.00, 1.52
SCFXM3 4089] 291 4259] 7314 1082(3197/4279{46085] 1.00[ 1.59
SCTAP2 3083 16/ 3086] 3491 100/2982/3082/3331 1.00] 1.05
GROW22 6344| 4327 7972[10957] 3813/4043(7856{8727] 1.01] 1.26
SHIPO4L 1409 0] 14091 1678 0/1409/1409/1221 1.00f 1.37
PILOTWE 3068/18634/21331/34526! 2187/2576(4763{5783| 4.48! 5.97
SIERRA 2968 0] 2968 3420 0/12968/2968/3011] 1.00] 1.14
SHIP08S 2787 7] 2791] 3009 50112290/{2791|2870, 1.00] 1.05
SCTAP3 4164 16 4170 4662] 175/3987/4162/4331] 1.00] 1.08
SHIP12S 4111 3] 4111 ¢ 86713244/4111] * 1.00 *

[25F V47 4670/ 10465/14666/27457] 2295/|3706/6001)/6650, 2.44] 4.13
SCsD8 1546, 992] 2475 6443 521/1356/1877/2256] 1.32] 2.86
NESM 2225 986] 3034] 9927] 395/2073/2468{2728] 1.23] 3.64
CZPRO8 3595 5| 3598 4157 887]2712/3599/3759 1.00 1.11
PILOTJA 5206{27209|31151/48335( 3467/3859(7326{9084/ 4.25 5.32
SHIPOSL 2790 71 2795 3162 490{2304/2794,2874] 1.00 1.10
SHIP12L 4111 3] 4111 ° 866/3245(4111 " 1.000 *
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factorization times f, under both versions (v = 0 for MI25BFAC and v = 1 for
MI26BFAC), as well as their ratio f;/ fy, and the total running time ¢, under both
versions (¢ = 0 for MI25BFAC and v = 1 for MI26BFAC), as well as their ratio
ty/ty. Our method outperforms MINOS in 44 of the factorization times but only
in 21 of the total execution times.

In addition to the auxiliary vectors wy (or o), our factorization requires the
storage of some elements of the original basis. The only elements of the basis that
need not be stored are located in the lower triangular part of the diagonal blocks.
More precisely, the first & elements of the rows of index & where column ¥ is a
spike are not needed (once the vector wy has been computed). We denote by a
the number of nonzero elements in the original basis, by a the number of these
nonzero elements that can be viewed as part of the factorization, by w the number
of nonzero elements in the auxiliary vectors wy, by = the number of elements stored
in the y-file. Thus the amount of storage required by our methed is sy = a+w for
the original basis and 8| = &4+w + z for the k'* basis.

Finally., we denote by l,u and I',u’ the sizes of the LU factors computed by
MINOS for the first and k'® basis respectively. The amount of storage required
by MINOS is sy = I + u for the original basis and sy = ' + «' for the kth basis.

In Table 6.5.2, we have listed the values of a and w, the sizes s; and s} of
the factorizations under MI26BFAC, the values [ and u, the sizes sy and sy of the
factorizations under MI25BFAC, as well as the ratios s;/:9 and s}/sp. In test-
problems where unboundedness has been detected, some factorizations have not
been carried out, rendering some of the above values unavailable. These instances
are indicated by a *,

In terms of sparsity, our method performs as well as or slightly better than
MINOS m 32 instances of direct factorizations. However it performs uniformly

worse after 25 column updates.

-1
-1




6.6 Conclusion

The testing experiment of Section 6.4 indicates that our factorization method
is numerically stable in practically all instances.

The testing experiment of Section 6.5 demonstrates that our factorization
method is more efficient when the diagonal blocks computed during the block-
trianguiarization are small, say of order 50 or less. This can be attributed to the
following points:

o The identification of the diagonal blocks resulting frora the block-triangular-
ization is efficient.

e Only the diagonal blocks are factored.

o A sorting of the rows that speeds up the reordering of each block is imple-
mented along with the factorization.

On the other hand, the same experiment shows that, when the block-triangul-
arization yields a large diagonal block, the size of our factorization becomes pro-
hibitively large and renders the whole method inefficient. In practically all in-
stances the numerical stability remains satisfactory.

Unfortunately, there does no* seem to exist an efficient updating algorithm for
the block-triangularization of a matrix. Because our method only factorizes the
diagonal blocks, this makes a conventional product-form updating almost manda-
tory. This method of updating appears less efficient than the Bartels-Golub up-
dating of the LU factors implemented in MINOS 5.3.

In spite of these drawbacks, we hope that future computer architectures and
numerical software will suggest more applications for all or part of our factorization

method.
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